Suppr超能文献

基于蒽基部分的超稳定共价三嗪有机骨架用于高性能二氧化碳吸附和超级电容器。

Ultrastable Covalent Triazine Organic Framework Based on Anthracene Moiety as Platform for High-Performance Carbon Dioxide Adsorption and Supercapacitors.

机构信息

Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.

Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt.

出版信息

Int J Mol Sci. 2022 Mar 15;23(6):3174. doi: 10.3390/ijms23063174.

Abstract

Conductive and porous nitrogen-rich materials have great potential as supercapacitor electrode materials. The exceptional efficiency of such compounds, however, is dependent on their larger surface area and the level of nitrogen doping. To address these issues, we synthesized a porous covalent triazine framework (An-CTFs) based on 9,10-dicyanoanthracene (An-CN) units through an ionothermal reaction in the presence of different molar ratios of molten zinc chloride (ZnCl) at 400 and 500 °C, yielding An-CTF-10-400, An-CTF-20-400, An-CTF-10-500, and An-CTF-20-500 microporous materials. According to N adsorption-desorption analyses (BET), these An-CTFs produced exceptionally high specific surface areas ranging from 406-751 m·g. Furthermore, An-CTF-10-500 had a capacitance of 589 F·g, remarkable cycle stability up to 5000 cycles, up to 95% capacity retention, and strong CO adsorption capacity up to 5.65 mmol·g at 273 K. As a result, our An-CTFs are a good alternative for both electrochemical energy storage and CO uptake.

摘要

具有导性和多孔结构的富氮材料在超级电容器电极材料方面具有巨大的潜力。然而,这些化合物的卓越效率取决于其更大的表面积和氮掺杂水平。为了解决这些问题,我们通过在熔融氯化锌(ZnCl)存在下的离子热反应,以不同的摩尔比在 400 和 500°C 下合成了基于 9,10-二氰基蒽(An-CN)单元的多孔共价三嗪骨架(An-CTFs),得到了 An-CTF-10-400、An-CTF-20-400、An-CTF-10-500 和 An-CTF-20-500 微孔材料。根据氮气吸附-脱附分析(BET),这些 An-CTFs 的比表面积高达 406-751 m·g。此外,An-CTF-10-500 的电容为 589 F·g,在 5000 次循环中具有出色的循环稳定性,容量保持率高达 95%,在 273 K 时对 CO 的吸附容量高达 5.65 mmol·g。因此,我们的 An-CTFs 是电化学储能和 CO 吸收的良好替代品。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12b2/8951433/425201a1bbef/ijms-23-03174-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验