Sironi Lorenzo
Department of Astronomy and Columbia Astrophysics Laboratory, Columbia University, New York, New York 10027, USA.
Phys Rev Lett. 2022 Apr 8;128(14):145102. doi: 10.1103/PhysRevLett.128.145102.
Magnetic reconnection in relativistic plasmas is well established as a fast and efficient particle accelerator, capable of explaining the most dramatic astrophysical flares. With particle-in-cell simulations, we demonstrate the importance of nonideal fields for the early stages ("injection") of particle acceleration. Most of the particles ending up with high energies (near or above the mean magnetic energy per particle) must have passed through nonideal regions where the assumptions of ideal magnetohydrodynamics are broken (i.e., regions with E>B or nonzero E_{∥}=E·B/B), whereas most of the particles that do not experience nonideal fields end up with Lorentz factors of order unity. Thus, injection by nonideal fields is a necessary prerequisite for further acceleration. Our results have important implications for the origin of nonthermal particles in high-energy astrophysical sources.
相对论性等离子体中的磁重联已被确认为一种快速且高效的粒子加速器,能够解释最剧烈的天体物理耀斑。通过粒子模拟,我们证明了非理想场在粒子加速早期阶段(“注入”)的重要性。最终获得高能量(接近或高于每个粒子的平均磁能)的大多数粒子必定经过了非理想区域,在这些区域理想磁流体动力学的假设不成立(即电场大于磁场的区域或非零平行电场(E_{∥}=E·B/B)的区域),而大多数未经历非理想场的粒子最终的洛伦兹因子约为1。因此,非理想场的注入是进一步加速的必要前提。我们的结果对高能天体物理源中非热粒子的起源具有重要意义。