Suppr超能文献

基于半金属五重六方石墨烯纳米带的分子结中的完美自旋过滤效应。

Perfect spin-filtering effect in molecular junctions based on half-metallic penta-hexa-graphene nanoribbons.

作者信息

Deng Yuan-Xiang, Chen Shi-Zhang, Hong Jun, Jia Pin-Zhen, Zhang Yong, Yu Xia, Chen Ke-Qiu

机构信息

School of Science, Hunan Institute of Technology, Hengyang 421002, People's Republic of China.

Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China.

出版信息

J Phys Condens Matter. 2022 May 12;34(28). doi: 10.1088/1361-648X/ac6b0a.

Abstract

The design and control of spintronic devices is a research hotspot in the field of electronics, and pure carbon-based materials provide new opportunities for the construction of electronic devices with excellent performance. Using density functional theory in combination with nonequilibrium Green's functions method, we design spin filter devices based on Penta-hexa-graphene (PHG) nanoribbons-a carbon nanomaterial in which the intrinsic magnetic moments combines with edge effects leading to a half-metallic property. Spin-resolved electronic transport studies show that such carbon-based devices can achieve nearly 100% spin filtering effect at low bias voltages. Such SEF can resist the influence of hydrogen passivation at different positions, but hardly survive under a hydrogen-rich environment. Our analysis show that the perfect SEF transport properties are caused by the magnetic and electronic properties of PHG nanoribbons, especially the magnetic moments on the quasi-carbons. These interesting results indicate that PHG nanomaterials have very prominent application prospects in future spintronic devices.

摘要

自旋电子器件的设计与控制是电子学领域的研究热点,纯碳基材料为构建高性能电子器件提供了新机遇。我们采用密度泛函理论结合非平衡格林函数方法,设计了基于五重六方石墨烯(PHG)纳米带的自旋滤波器器件,PHG是一种碳纳米材料,其本征磁矩与边缘效应相结合,导致具有半金属特性。自旋分辨电子输运研究表明,这种碳基器件在低偏置电压下可实现近100%的自旋过滤效应。这种自旋过滤效应能抵抗不同位置氢钝化的影响,但在富氢环境下几乎无法存续。我们的分析表明,完美的自旋过滤输运特性是由PHG纳米带的磁性和电子特性引起的,尤其是准碳上的磁矩。这些有趣的结果表明,PHG纳米材料在未来的自旋电子器件中具有非常突出的应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验