Suppr超能文献

被动监测卒中严重程度指标的外部验证

External Validation of the Passive Surveillance Stroke Severity Indicator.

作者信息

Joundi Raed A, King James A, Stang Jillian, Nicol Dana, Hill Michael D, Kapral Moira K, Smith Eric E, Yu Amy Y X

机构信息

Division of Neurology, Hamilton Health Sciences, McMaster University & Population Health Research Institute, Hamilton, ON, Canada.

Alberta Strategy for Patient Oriented Research Support Unit Data Platform; Provincial Research Data Services, Alberta Health Services, AB, Canada.

出版信息

Can J Neurol Sci. 2023 May;50(3):399-404. doi: 10.1017/cjn.2022.46. Epub 2022 Apr 28.

Abstract

BACKGROUND

The Passive Surveillance Stroke Severity (PaSSV) Indicator was derived to estimate stroke severity from variables in administrative datasets but has not been externally validated.

METHODS

We used linked administrative datasets to identify patients with first hospitalization for acute stroke between 2007-2018 in Alberta, Canada. We used the PaSSV indicator to estimate stroke severity. We used Cox proportional hazard models and evaluated the change in hazard ratios and model discrimination for 30-day and 1-year case fatality with and without PaSSV. Similar comparisons were made for 90-day home time thresholds using logistic regression. We also linked with a clinical registry to obtain National Institutes of Health Stroke Scale (NIHSS) and compared estimates from models without stroke severity, with PaSSV, and with NIHSS.

RESULTS

There were 28,672 patients with acute stroke in the full sample. In comparison to no stroke severity, addition of PaSSV to the 30-day case fatality models resulted in improvement in model discrimination (C-statistic 0.72 [95%CI 0.71-0.73] to 0.80 [0.79-0.80]). After adjustment for PaSSV, admission to a comprehensive stroke center was associated with lower 30-day case fatality (adjusted hazard ratio changed from 1.03 [0.96-1.10] to 0.72 [0.67-0.77]). In the registry sample (N = 1328), model discrimination for 30-day case fatality improved with the inclusion of stroke severity. Results were similar for 1-year case fatality and home time outcomes.

CONCLUSION

Addition of PaSSV improved model discrimination for case fatality and home time outcomes. The validity of PASSV in two Canadian provinces suggests that it is a useful tool for baseline risk adjustment in acute stroke.

摘要

背景

被动监测卒中严重程度(PaSSV)指标旨在根据行政数据集中的变量估算卒中严重程度,但尚未经过外部验证。

方法

我们使用关联的行政数据集来识别2007年至2018年期间在加拿大艾伯塔省首次因急性卒中住院的患者。我们使用PaSSV指标来估算卒中严重程度。我们使用Cox比例风险模型,并评估了有无PaSSV时30天和1年病死率的风险比变化及模型辨别力。使用逻辑回归对90天居家时间阈值进行了类似比较。我们还与临床登记处建立联系以获取美国国立卫生研究院卒中量表(NIHSS),并比较了无卒中严重程度模型、有PaSSV模型和有NIHSS模型的估算结果。

结果

全样本中有28,672例急性卒中患者。与无卒中严重程度模型相比,在30天病死率模型中加入PaSSV可改善模型辨别力(C统计量从0.72[95%CI 0.71 - 0.73]提高到0.80[0.79 - 0.80])。在对PaSSV进行调整后,入住综合卒中中心与较低的30天病死率相关(调整后的风险比从1.03[0.96 - 1.10]变为0.72[0.67 - 0.77])。在登记样本(N = 1328)中,纳入卒中严重程度后30天病死率的模型辨别力有所提高。1年病死率和居家时间结局的结果相似。

结论

加入PaSSV可改善病死率和居家时间结局的模型辨别力。PaSSV在加拿大两个省份的有效性表明,它是急性卒中基线风险调整的有用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验