Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.
Purinergic Signal. 2022 Dec;18(4):451-467. doi: 10.1007/s11302-022-09863-5. Epub 2022 Apr 28.
Mutant superoxide dismutase 1 (SOD1) can be constitutively released from motor neurons and transmitted to naïve motor neurons to promote the progression of amyotrophic lateral sclerosis (ALS). However, the biological impacts of this process and the precise mechanisms of SOD1 release remain to be fully resolved. Using biochemical and fluorescent techniques, this study aimed to determine if P2X7 receptor activation could induce mutant SOD1 release from motor neurons and whether this released SOD1 could be transmitted to motor neurons or microglia to mediate effects associated with neurodegeneration in ALS. Aggregated SOD1, released from murine NSC-34 motor neurons transiently transfected with SOD1, could be transmitted to naïve NSC-34 cells and murine EOC13 microglia to induce endoplasmic reticulum (ER) stress and tumour necrosis factor-alpha (TNFα) release, respectively. Immunoblotting revealed NSC-34 cells expressed P2X7. Extracellular ATP induced cation dye uptake into these cells, which was blocked by the P2X7 antagonist AZ10606120, demonstrating these cells express functional P2X7. Moreover, ATP induced the rapid release of aggregated SOD1 from NSC-34 cells transiently transfected with SOD1, a process blocked by AZ10606120 and revealing a role for P2X7 in this process. ATP-induced SOD1 release coincided with membrane blebbing. Finally, aggregated SOD1 released via P2X7 activation could also be transmitted to NSC-34 and EOC13 cells to induce ER stress and TNFα release, respectively. Collectively, these results identify a novel role for P2X7 in the prion-like propagation of SOD1 in ALS and provide a possible explanation for the therapeutic benefits of P2X7 antagonism previously observed in ALS SOD1 mice.
突变型超氧化物歧化酶 1(SOD1)可以从运动神经元中持续释放,并传递到未成熟的运动神经元,从而促进肌萎缩侧索硬化症(ALS)的进展。然而,这个过程的生物学影响以及 SOD1 释放的确切机制仍有待充分阐明。本研究采用生化和荧光技术,旨在确定 P2X7 受体的激活是否可以诱导运动神经元释放突变型 SOD1,以及这种释放的 SOD1 是否可以传递到运动神经元或小胶质细胞,从而介导与 ALS 中神经退行性变相关的效应。从瞬时转染 SOD1 的鼠 NSC-34 运动神经元中释放的聚集 SOD1 可以传递到未成熟的 NSC-34 细胞和鼠 EOC13 小胶质细胞,分别诱导内质网(ER)应激和肿瘤坏死因子-α(TNFα)释放。免疫印迹显示 NSC-34 细胞表达 P2X7。细胞外 ATP 诱导这些细胞摄取阳离子染料,该过程被 P2X7 拮抗剂 AZ10606120 阻断,证明这些细胞表达功能性 P2X7。此外,ATP 诱导瞬时转染 SOD1 的 NSC-34 细胞中聚集的 SOD1 快速释放,该过程被 AZ10606120 阻断,表明 P2X7 在该过程中起作用。ATP 诱导的 SOD1 释放与膜起泡同时发生。最后,通过 P2X7 激活释放的聚集 SOD1 也可以传递到 NSC-34 和 EOC13 细胞,分别诱导 ER 应激和 TNFα 释放。总之,这些结果确定了 P2X7 在 ALS 中 SOD1 朊病毒样传播中的新作用,并为先前在 ALS SOD1 小鼠中观察到的 P2X7 拮抗作用的治疗益处提供了可能的解释。