Imman Saksit, Khongchamnan Punjarat, Wanmolee Wanwitoo, Laosiripojana Navadol, Kreetachat Torpong, Sakulthaew Chainarong, Chokejaroenrat Chanat, Suriyachai Nopparat
School of Energy and Environment, University of Phayao Tambon Maeka, Amphur Muang Phayao 56000 Thailand
National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) Pathum Thani 12120 Thailand.
RSC Adv. 2021 Aug 5;11(43):26773-26784. doi: 10.1039/d1ra03237b. eCollection 2021 Aug 2.
Conversion of lignocellulosic residue to bioenergy and biofuel is a promising platform for global sustainability. Fractionation is an initial step for isolating lignocellulosic components for subsequent valorization. The aim of this research is to develop the solvothermal fractionation of sugarcane bagasse to produce high purity lignin. The physio-chemical structure of isolated lignin from this process was determined. In this study, a central composite design-based response surface methodology (RSM) was used to optimize an acid promoter for isolating lignin from sugarcane bagasse using a solvothermal fractionation process. The reaction was carried out with sulfuric acid, at a concentration of 0.01-0.02 M and a reaction temperature of 180-200 °C for 30-90 min. The optimal conditions for the experiment were obtained at the acid concentration of 0.02 M with a temperature of 200 °C for 90 min in methyl isobutyl ketone (MIBK)/methanol/water (35% : 25% : 40% v/v%). The results showed that 88% of lignin removal was done in the solid phase, while 87% of lignin recovery was conducted in the organic phase. Furthermore, the changes in the physico-chemical characteristics of solid residue and lignin recovery were analyzed using various techniques. GPC analysis of recovered lignin from the organic fraction showed a lower (1374 g mol) and polydispersity index (1.75) compared to commercial organosolv lignin. The major lignin degradation temperature of commercial organosolv lignin was estimated to be 410 °C, whereas BGL showed two main degradations at 291 °C and 437 °C, which could point to potential relationships with the degradation of β--4 cross-links. The results indicated that recovered lignin was mostly cross-linked by β--4 cross-links. In addition, Py-GC/MS and 2D HSQC NMR gave more information regarding the compositional and structural features of recovered lignin. The development of the sulfuric acid catalyzed solvothermal process in this study provides efficient extraction of high-value organosolv lignin from sugarcane bagasse and the production of recovered lignin in the organic phase with low contamination from other contents. The lignin characteristic data can contribute to the development of lignin valorization in value-added applications.
将木质纤维素残渣转化为生物能源和生物燃料是实现全球可持续发展的一个有前景的平台。分级分离是分离木质纤维素成分以便后续增值利用的第一步。本研究的目的是开发甘蔗渣的溶剂热分级分离法以生产高纯度木质素。测定了该过程中分离出的木质素的物理化学结构。在本研究中,基于中心复合设计的响应面方法(RSM)被用于优化一种酸促进剂,以便使用溶剂热分级分离法从甘蔗渣中分离木质素。反应在硫酸存在下进行,硫酸浓度为0.01 - 0.02 M,反应温度为180 - 200℃,反应时间为30 - 90分钟。实验的最佳条件是在甲基异丁基酮(MIBK)/甲醇/水(35% : 25% : 40% v/v%)体系中,酸浓度为0.02 M,温度为200℃,反应90分钟。结果表明,88%的木质素从固相中去除,而87%的木质素在有机相中回收。此外,使用各种技术分析了固体残渣的物理化学特性变化和木质素回收情况。对从有机相中回收的木质素进行凝胶渗透色谱(GPC)分析表明,与商业有机溶剂木质素相比,其分子量较低(1374 g/mol)且多分散指数为1.75。商业有机溶剂木质素的主要木质素降解温度估计为410℃,而本研究中的木质素(BGL)在291℃和437℃出现两个主要降解峰,这可能表明与β - O - 4交联键的降解存在潜在关系。结果表明,回收的木质素主要通过β - O - 4交联键交联。此外,热解气相色谱/质谱联用(Py - GC/MS)和二维异核单量子相干核磁共振(2D HSQC NMR)提供了更多关于回收木质素的组成和结构特征的信息。本研究中硫酸催化的溶剂热过程的开发实现了从甘蔗渣中高效提取高价值的有机溶剂木质素,并在有机相中生产出受其他成分污染低的回收木质素。木质素特性数据有助于开发增值应用中的木质素增值利用。