Suppr超能文献

用于低介电常数和超高耐热性的聚苯并咪唑逐步共聚

Stepwise copolymerization of polybenzimidazole for a low dielectric constant and ultrahigh heat resistance.

作者信息

Zhong Xianzhu, Nag Aniruddha, Zhou Jiabei, Takada Kenji, Amat Yusof Fitri Adila, Mitsumata Tetsu, Oqmhula Kenji, Hongo Kenta, Maezono Ryo, Kaneko Tatsuo

机构信息

Graduate School of Advanced Science and Technology, Energy and Environment Area, Japan Advanced Institute of Science and Technology (JAIST) 1-1 Asahidai Nomi Ishikawa 923-1292 Japan

School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology Rayong 21210 Thailand.

出版信息

RSC Adv. 2022 Apr 19;12(19):11885-11895. doi: 10.1039/d2ra01488b. eCollection 2022 Apr 13.

Abstract

Bio-based polymer materials having great potential due to the depletion of fossil-fuel resources have been applied as single-use and medicinal materials but their low thermomechanical resistance have limited wider applications. Here, ultrahigh thermoresistant bio-based terpolymers with a low dielectric constant, comprising polybenzimidazole and poly(benzoxazole--aramid), were prepared by a method involving stepwise polycondensation of three monomers, 3,4-diaminobenzoic acid for benzimidazoles, 3-amino-4-hydroxylbenzoic acid for benzoxazoles, and 4-aminobenzoic acid for aramids. For optimized monomer compositions, the obtained terpolymers exhibited dielectric constants lower than 3, and a 10% mass loss at approximately 760 °C which is a temperature higher than that for any other polymer material reported so far. The high thermal degradation temperatures of the prepared terpolymers were a result of the high interaction enthalpies of hydrogen bonding between imidazole rings in the polymer chains, which were obtained from density functional theory calculations using trimer models. Furthermore, the applicability of the prepared terpolymers as a wire-coating material for a simple motor insulation was demonstrated, indicating that it has significant potential to be used as a thermostable material with a low dielectric constant ().

摘要

由于化石燃料资源的枯竭,具有巨大潜力的生物基聚合物材料已被用作一次性材料和药用材料,但其较低的热机械抗性限制了其更广泛的应用。在此,通过一种涉及三种单体逐步缩聚的方法制备了具有低介电常数的超高耐热生物基三元共聚物,其中包括聚苯并咪唑和聚(苯并恶唑 - 芳族聚酰胺),用于制备苯并咪唑的3,4 - 二氨基苯甲酸、用于制备苯并恶唑的3 - 氨基 - 4 - 羟基苯甲酸以及用于制备芳族聚酰胺的4 - 氨基苯甲酸。对于优化的单体组成,所得三元共聚物的介电常数低于3,在约760℃时质量损失10%,该温度高于迄今为止报道的任何其他聚合物材料的温度。所制备的三元共聚物的高热降解温度是聚合物链中咪唑环之间氢键的高相互作用焓的结果,这是通过使用三聚体模型的密度泛函理论计算获得的。此外,还证明了所制备的三元共聚物作为简单电机绝缘的电线涂层材料的适用性,表明其具有作为低介电常数热稳定材料使用的巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4b3/9016846/7465bd9f34cf/d2ra01488b-s1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验