Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.
Department of Electrical Engineering and Computer Science, MIT, Cambridge, Massachusetts, USA.
Magn Reson Med. 2022 Sep;88(3):1112-1125. doi: 10.1002/mrm.29277. Epub 2022 Apr 28.
To develop a motion estimation and correction method for motion-robust three-dimensional (3D) quantitative imaging with 3D-echo-planar time-resolved imaging.
The 3D-echo-planar time-resolved imaging technique was designed with additional four-dimensional navigator acquisition (x-y-z-echoes) to achieve fast and motion-robust quantitative imaging of the human brain. The four-dimensional-navigator is inserted into the relaxation-recovery deadtime of the sequence in every pulse TR (∼2 s) to avoid extra scan time, and to provide continuous tracking of the 3D head motion and B -inhomogeneity changes. By using an optimized spatiotemporal encoding combined with a partial-Fourier scheme, the navigator acquires a large central k-t data block for accurate motion estimation using only four small-flip-angle excitations and readouts, resulting in negligible signal-recovery reduction to the 3D-echo-planar time-resolved imaging acquisition. By incorporating the estimated motion and B -inhomogeneity changes into the reconstruction, multi-contrast images can be recovered with reduced motion artifacts.
Simulation shows the cost to the SNR efficiency from the added navigator acquisitions is <1%. Both simulation and in vivo retrospective experiments were conducted, that demonstrate the four-dimensional navigator provided accurate estimation of the 3D motion and B -inhomogeneity changes, allowing effective reduction of image artifacts in quantitative maps. Finally, in vivo prospective undersampling acquisition was performed with and without head motion, in which the motion corrupted data after correction show close image quality and consistent quantifications to the motion-free scan, providing reliable quantitative measurements even with head motion.
The proposed four-dimensional navigator acquisition provides reliable tracking of the head motion and B change with negligible SNR cost, equips the 3D-echo-planar time-resolved imaging technique for motion-robust and efficient quantitative imaging.
开发一种运动估计和校正方法,用于具有 3D 回波平面时间分辨成像的运动稳健三维(3D)定量成像。
设计了 3D 回波平面时间分辨成像技术,具有附加的四维导航采集(x-y-z-回波),以实现人脑的快速和运动稳健定量成像。四维导航器在每个脉冲 TR(约 2 s)的序列弛豫恢复死区中插入,以避免额外的扫描时间,并提供 3D 头部运动和 B 不均匀性变化的连续跟踪。通过使用优化的时空编码与部分傅里叶方案相结合,导航器获取大的中央 k-t 数据块,仅使用四个小翻转角激励和读出进行精确的运动估计,从而对 3D 回波平面时间分辨成像采集的信号恢复减少可忽略不计。通过将估计的运动和 B 不均匀性变化纳入重建中,可以恢复具有较少运动伪影的多对比度图像。
模拟表明,添加导航器采集对 SNR 效率的成本<1%。进行了模拟和体内回顾性实验,证明了四维导航器可以准确估计 3D 运动和 B 不均匀性变化,有效地减少定量图中的图像伪影。最后,在存在和不存在头部运动的情况下进行了体内前瞻性欠采样采集,校正后的运动污染数据显示出接近的图像质量和与无运动扫描一致的定量结果,即使存在头部运动也能提供可靠的定量测量。
所提出的四维导航器采集提供了对头部运动和 B 变化的可靠跟踪,对 SNR 成本几乎没有影响,为 3D 回波平面时间分辨成像技术提供了运动稳健和高效的定量成像能力。