Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India.
G3 (Bethesda). 2022 May 30;12(6). doi: 10.1093/g3journal/jkac066.
Repair of DNA interstrand crosslinks involves a functional interplay among different DNA surveillance and repair pathways. Previous work has shown that interstrand crosslink-inducing agents cause damage to Saccharomyces cerevisiae nuclear and mitochondrial DNA, and its pso2/snm1 mutants exhibit a petite phenotype followed by loss of mitochondrial DNA integrity and copy number. Complex as it is, the cause and underlying molecular mechanisms remains elusive. Here, by combining a wide range of approaches with in vitro and in vivo analyses, we interrogated the subcellular localization and function of Pso2. We found evidence that the nuclear-encoded Pso2 contains 1 mitochondrial targeting sequence and 2 nuclear localization signals (NLS1 and NLS2), although NLS1 resides within the mitochondrial targeting sequence. Further analysis revealed that Pso2 is a dual-localized interstrand crosslink repair protein; it can be imported into both nucleus and mitochondria and that genotoxic agents enhance its abundance in the latter. While mitochondrial targeting sequence is essential for mitochondrial Pso2 import, either NLS1 or NLS2 is sufficient for its nuclear import; this implies that the 2 nuclear localization signal motifs are functionally redundant. Ablation of mitochondrial targeting sequence abrogated mitochondrial Pso2 import, and concomitantly, raised its levels in the nucleus. Strikingly, mutational disruption of both nuclear localization signal motifs blocked the nuclear Pso2 import; at the same time, they enhanced its translocation into the mitochondria, consistent with the notion that the relationship between mitochondrial targeting sequence and nuclear localization signal motifs is competitive. However, the nuclease activity of import-deficient species of Pso2 was not impaired. The potential relevance of dual targeting of Pso2 into 2 DNA-bearing organelles is discussed.
DNA 链间交联的修复涉及不同的 DNA 监测和修复途径之间的功能相互作用。以前的工作表明,链间交联诱导剂会导致酿酒酵母核和线粒体 DNA 受损,其 pso2/snm1 突变体表现出 petite 表型,随后线粒体 DNA 完整性和拷贝数丧失。尽管很复杂,但原因和潜在的分子机制仍然难以捉摸。在这里,我们通过结合广泛的方法进行体外和体内分析,研究了 Pso2 的亚细胞定位和功能。我们有证据表明,核编码的 Pso2 含有 1 个线粒体靶向序列和 2 个核定位信号(NLS1 和 NLS2),尽管 NLS1 位于线粒体靶向序列内。进一步的分析表明,Pso2 是一种双定位的链间交联修复蛋白;它可以被导入细胞核和线粒体,并且遗传毒性试剂可以增加其在后者中的丰度。虽然线粒体靶向序列对于线粒体 Pso2 的导入是必不可少的,但 NLS1 或 NLS2 足以用于其核导入;这意味着这两个核定位信号基序在功能上是冗余的。线粒体靶向序列的缺失消除了线粒体 Pso2 的导入,同时,它提高了其在细胞核中的水平。引人注目的是,破坏两个核定位信号基序都阻止了核 Pso2 的导入;同时,它们增强了其向线粒体的易位,这与线粒体靶向序列和核定位信号基序之间的关系是竞争性的观点一致。然而,导入缺陷型 Pso2 的核酸酶活性没有受损。讨论了 Pso2 双定位到两个含有 DNA 的细胞器的潜在相关性。