Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA.
Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA.
J Biol Chem. 2020 Jul 3;295(27):8945-8957. doi: 10.1074/jbc.RA120.013626. Epub 2020 May 5.
DNA interstrand crosslink (ICL) repair requires a complex network of DNA damage response pathways. Removal of the ICL lesions is vital, as they are physical barriers to essential DNA processes that require the separation of duplex DNA, such as replication and transcription. The Fanconi anemia (FA) pathway is the principal mechanism for ICL repair in metazoans and is coupled to DNA replication. In , a vestigial FA pathway is present, but ICLs are predominantly repaired by a pathway involving the Pso2 nuclease, which is hypothesized to use its exonuclease activity to digest through the lesion to provide access for translesion polymerases. However, Pso2 lacks translesion nuclease activity , and mechanistic details of this pathway are lacking, especially relative to FA. We recently identified the Hrq1 helicase, a homolog of the disease-linked enzyme RecQ-like helicase 4 (RECQL4), as a component of Pso2-mediated ICL repair. Here, using genetic, biochemical, and biophysical approaches, including single-molecule FRET (smFRET)- and gel-based nuclease assays, we show that Hrq1 stimulates the Pso2 nuclease through a mechanism that requires Hrq1 catalytic activity. Importantly, Hrq1 also stimulated Pso2 translesion nuclease activity through a site-specific ICL We noted that stimulation of Pso2 nuclease activity is specific to eukaryotic RecQ4 subfamily helicases, and genetic and biochemical data suggest that Hrq1 likely interacts with Pso2 through their N-terminal domains. These results advance our understanding of FA-independent ICL repair and establish a role for the RecQ4 helicases in the repair of these detrimental DNA lesions.
DNA 链间交联 (ICL) 修复需要一个复杂的 DNA 损伤反应途径网络。去除 ICL 损伤至关重要,因为它们是物理障碍,会阻碍需要分离双链 DNA 的基本 DNA 过程,例如复制和转录。范可尼贫血 (FA) 途径是后生动物 ICL 修复的主要机制,与 DNA 复制偶联。在酵母中,存在一种退化的 FA 途径,但 ICL 主要通过涉及 Pso2 核酸内切酶的途径修复,据推测,该途径利用其外切核酸酶活性通过损伤部位进行消化,为跨损伤聚合酶提供进入途径。然而,Pso2 缺乏跨损伤核酸酶活性,并且该途径的机制细节,特别是相对于 FA 的细节,尚不清楚。我们最近发现,Hrq1 解旋酶是与疾病相关的酶 RecQ 样解旋酶 4 (RECQL4) 的同源物,是 Pso2 介导的 ICL 修复的一个组成部分。在这里,我们使用遗传、生化和生物物理方法,包括单分子 FRET (smFRET) 和基于凝胶的核酸内切酶测定法,表明 Hrq1 通过需要 Hrq1 催化活性的机制刺激 Pso2 核酸内切酶。重要的是,Hrq1 还通过特定于 ICL 的位点刺激 Pso2 跨损伤核酸酶活性。我们注意到,Pso2 核酸内切酶活性的刺激是真核 RecQ4 亚家族解旋酶特有的,遗传和生化数据表明,Hrq1 可能通过它们的 N 端结构域与 Pso2 相互作用。这些结果推进了我们对 FA 不依赖的 ICL 修复的理解,并确立了 RecQ4 解旋酶在修复这些有害 DNA 损伤中的作用。