Ni Wenjun, Li Yongxiang, Liang Lingxia, Yang Shuyue, Zhan Meixiao, Lu Cuixia, Lu Ligong, Wen Liewei
Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, 519000, Zhuhai, Guangdong, China.
Department of Urology, Weifang People's Hospital, 261000, Weifang, Shandong, China.
J Biomed Nanotechnol. 2022 Feb 1;18(2):327-342. doi: 10.1166/jbn.2022.3250.
The most common type of kidney tumor, clear-cell renal cell carcinoma (ccRCC) with relatively insidious development and easily metastatic characteristics is generally insensitive to cytotoxic chemotherapy. The abundant polyunsaturated fatty acids (PUFAs) content in advanced ccRCC allows it to be intrinsically vulnerable to ferroptosis-based therapeutic strategies. Nevertheless, the strategy to cause the "iron overload" by administration with iron-based nanomaterials has limited therapeutic efficacy. And the classic ferroptosis agonist (RSL3) with low specificity for tumors, short half-life in the blood, poor water solubility and deficient accumulation at the tumor site prevents its reliable application . In this study, iron-based metal-organic framework nanoparticles (MIL-101(Fe) NPs) delivered RSL3 to ccRCC tumors, and then released the iron ions and RSL3 accompanied by the degradation of MIL-101(Fe) NPs in the acidic tumor microenvironment. The MIL-101(Fe)@RSL3 as a pH-responsive nanodrug causes cellular iron overload and promotes the hydroxyl radical (OH) generation by Fenton reaction to attack PUFAs, leading to the aberrant accumulation of lipid peroxides (L-OOH). Additionally, RSL3 directly inhibits glutathione peroxidase 4 (GPX4) to detoxify L-OOH, and ferrous ions further catalyze the irreversible conversion of highly reactive lipid alkoxyl radicals (L-O) from L-OOH to triggering waterfall-like cascade ferroptosis. In contrast to the limited antitumor efficiency of free RSL3, MIL-101(Fe)@RSL3 with high encapsulation efficiency (88.7%) shows a significant ccRCC-specific antitumor effect and negligible side effects. Taken together, MIL-101(Fe)@RSL3 could aggravate ferroptosis and be expected to be a promising nanodrug for ccRCC systemic therapy due to the targeted delivery and responsive release of RSL3 and iron ions.
最常见的肾肿瘤类型——透明细胞肾细胞癌(ccRCC),其发展相对隐匿且易于转移,通常对细胞毒性化疗不敏感。晚期ccRCC中丰富的多不饱和脂肪酸(PUFAs)含量使其在本质上易受基于铁死亡的治疗策略影响。然而,通过给予铁基纳米材料导致“铁过载”的策略治疗效果有限。并且经典的铁死亡激动剂(RSL3)对肿瘤的特异性低、在血液中的半衰期短、水溶性差以及在肿瘤部位的蓄积不足,阻碍了其可靠应用。在本研究中,铁基金属有机框架纳米颗粒(MIL-101(Fe) NPs)将RSL3递送至ccRCC肿瘤,然后在酸性肿瘤微环境中伴随着MIL-101(Fe) NPs的降解释放出铁离子和RSL3。MIL-101(Fe)@RSL3作为一种pH响应性纳米药物,导致细胞铁过载,并通过芬顿反应促进羟基自由基(OH)生成以攻击PUFAs,导致脂质过氧化物(L-OOH)异常蓄积。此外,RSL3直接抑制谷胱甘肽过氧化物酶4(GPX4)以解毒L-OOH,亚铁离子进一步催化L-OOH中高反应性脂质烷氧基自由基(L-O)不可逆地转化,从而引发瀑布式级联铁死亡。与游离RSL3有限的抗肿瘤效率相比,具有高包封效率(88.7%)的MIL-101(Fe)@RSL3显示出显著的ccRCC特异性抗肿瘤作用且副作用可忽略不计。综上所述,由于RSL3和铁离子的靶向递送和响应性释放,MIL-101(Fe)@RSL3可加重铁死亡,有望成为一种用于ccRCC全身治疗的有前景的纳米药物。
ACS Biomater Sci Eng. 2022-6-13
Curr Top Microbiol Immunol. 2017
Int J Biol Sci. 2025-2-24
Int J Nanomedicine. 2025-2-5
Front Immunol. 2024
Cell Death Discov. 2024-10-9
Cancers (Basel). 2024-9-11
Int J Nanomedicine. 2023
Front Bioeng Biotechnol. 2022-10-7