文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

iRGD 与索拉非尼负载铁基金属有机骨架联合应用作为肝癌治疗的靶向铁死亡剂。

Co-Administration of iRGD with Sorafenib-Loaded Iron-Based Metal-Organic Framework as a Targeted Ferroptosis Agent for Liver Cancer Therapy.

机构信息

Department of Radiology and Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.

Laboratory of Controllable Preparation and Application of Nanomaterials, Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China.

出版信息

Int J Nanomedicine. 2021 Feb 11;16:1037-1050. doi: 10.2147/IJN.S292528. eCollection 2021.


DOI:10.2147/IJN.S292528
PMID:33603367
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7884959/
Abstract

PURPOSE: Hepatocellular carcinoma (HCC) is one of the most common fatal cancers, with no curative therapy available. The concept of ferroptosis is attracting increasing attention in cancer research. Herein, we describe the use of a nanodevice as an effective strategy for inducing ferroptosis to manage HCC. METHODS: To improve ferroptosis-induced treatment of HCC, we constructed sorafenib (sor)-loaded MIL-101(Fe) nanoparticles (NPs) [MIL-101(Fe)@sor] and evaluated the efficacy of ferroptosis-based HCC therapy after co-administration with the iRGD peptide both in vitro and in vivo. RESULTS: The prepared MIL-101(Fe) NPs have several promising characteristics including drug-loading, controllable release, peroxidase activity, biocompatibility, and T2 magnetic resonance imaging ability. MIL-101(Fe)@sor NPs significantly induced ferroptosis in HepG2 cells, increased the levels of lipid peroxidation and malondialdehyde, and reduced those of glutathione and glutathione peroxidase 4 (GPX-4). The in vivo results showed that the MIL-101(Fe)@sor NPs significantly inhibited tumor progression and decreased GPX-4 expression levels, with negligible long-term toxicity. Meanwhile, co-administration of MIL-101(Fe)@sor NPs with iRGD significantly accelerated ferroptosis. CONCLUSION: Our findings suggest that MIL-101(Fe)@sor NPs co-administered with iRGD are a promising strategy for inducing HCC ferroptosis.

摘要

目的:肝细胞癌(HCC)是最常见的致命癌症之一,目前尚无有效的治疗方法。铁死亡的概念在癌症研究中越来越受到关注。本文描述了一种纳米器件作为一种有效的诱导铁死亡策略来治疗 HCC。

方法:为了提高铁死亡诱导治疗 HCC 的效果,我们构建了索拉非尼(sor)负载的 MIL-101(Fe) 纳米粒子(NPs)[MIL-101(Fe)@sor],并评估了在与 iRGD 肽共同给药后,基于铁死亡的 HCC 治疗的效果,无论是在体外还是体内。

结果:所制备的 MIL-101(Fe) NPs 具有几种有前途的特性,包括载药、可控释放、过氧化物酶活性、生物相容性和 T2 磁共振成像能力。MIL-101(Fe)@sor NPs 可显著诱导 HepG2 细胞发生铁死亡,增加脂质过氧化和丙二醛水平,降低谷胱甘肽和谷胱甘肽过氧化物酶 4(GPX-4)水平。体内结果表明,MIL-101(Fe)@sor NPs 可显著抑制肿瘤进展并降低 GPX-4 表达水平,且长期毒性可忽略不计。同时,MIL-101(Fe)@sor NPs 与 iRGD 联合给药可显著加速铁死亡。

结论:我们的研究结果表明,MIL-101(Fe)@sor NPs 联合 iRGD 是一种很有前途的诱导 HCC 铁死亡的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3031/7884959/02edc09d7c29/IJN-16-1037-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3031/7884959/d098c7eb0e34/IJN-16-1037-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3031/7884959/f8fad2eac4e6/IJN-16-1037-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3031/7884959/29c971e27ec8/IJN-16-1037-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3031/7884959/8e5d02ab72b8/IJN-16-1037-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3031/7884959/2143c9e556c8/IJN-16-1037-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3031/7884959/787b99cd620f/IJN-16-1037-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3031/7884959/0bb95e240b54/IJN-16-1037-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3031/7884959/02edc09d7c29/IJN-16-1037-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3031/7884959/d098c7eb0e34/IJN-16-1037-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3031/7884959/f8fad2eac4e6/IJN-16-1037-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3031/7884959/29c971e27ec8/IJN-16-1037-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3031/7884959/8e5d02ab72b8/IJN-16-1037-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3031/7884959/2143c9e556c8/IJN-16-1037-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3031/7884959/787b99cd620f/IJN-16-1037-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3031/7884959/0bb95e240b54/IJN-16-1037-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3031/7884959/02edc09d7c29/IJN-16-1037-g0008.jpg

相似文献

[1]
Co-Administration of iRGD with Sorafenib-Loaded Iron-Based Metal-Organic Framework as a Targeted Ferroptosis Agent for Liver Cancer Therapy.

Int J Nanomedicine. 2021

[2]
A pH-Responsive Drug-Delivery System Based on Apatinib-Loaded Metal-Organic Frameworks for Ferroptosis-Targeted Synergistic Anti-Tumor Therapy.

Int J Nanomedicine. 2024

[3]
Dual GSH-exhausting sorafenib loaded manganese-silica nanodrugs for inducing the ferroptosis of hepatocellular carcinoma cells.

Int J Pharm. 2019-10-31

[4]
iRGD decorated lipid-polymer hybrid nanoparticles for targeted co-delivery of doxorubicin and sorafenib to enhance anti-hepatocellular carcinoma efficacy.

Nanomedicine. 2016-7

[5]
Epigenetic regulation of ferroptosis via ETS1/miR-23a-3p/ACSL4 axis mediates sorafenib resistance in human hepatocellular carcinoma.

J Exp Clin Cancer Res. 2022-1-3

[6]
Artesunate synergizes with sorafenib to induce ferroptosis in hepatocellular carcinoma.

Acta Pharmacol Sin. 2021-2

[7]
Co-administration of combretastatin A4 nanoparticles and sorafenib for systemic therapy of hepatocellular carcinoma.

Acta Biomater. 2019-5-14

[8]
SPARC regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma.

Cancer Biomark. 2021

[9]
MCM4 potentiates evasion of hepatocellular carcinoma from sorafenib-induced ferroptosis through Nrf2 signaling pathway.

Int Immunopharmacol. 2024-12-5

[10]
Targeted Therapy for Hepatocellular Carcinoma: Co-Delivery of Sorafenib and Curcumin Using Lactosylated pH-Responsive Nanoparticles.

Drug Des Devel Ther. 2020

引用本文的文献

[1]
Sorafenib-Drug Delivery Strategies in Primary Liver Cancer.

J Funct Biomater. 2025-4-21

[2]
Bibliometric analysis of nanoparticle research for diagnostics and therapeutics in hepatocellular carcinoma.

Discov Nano. 2025-3-30

[3]
Hepatic Iron Overload and Hepatocellular Carcinoma: New Insights into Pathophysiological Mechanisms and Therapeutic Approaches.

Cancers (Basel). 2025-1-24

[4]
Therapeutic types and advantages of functionalized nanoparticles in inducing ferroptosis in cancer therapy.

Ann Med. 2024-12

[5]
Ferroptosis: A double-edged sword.

Cell Death Discov. 2024-5-30

[6]
Ferroptosis targeting natural compounds as a promising approach for developing potent liver cancer agents.

Front Pharmacol. 2024-4-26

[7]
Advances in Ferroptosis-Inducing Agents by Targeted Delivery System in Cancer Therapy.

Int J Nanomedicine. 2024

[8]
Inaugurating a novel adjuvant therapy in urological cancers: Ferroptosis.

Cancer Pathog Ther. 2022-10-10

[9]
Iron accumulation and lipid peroxidation: implication of ferroptosis in hepatocellular carcinoma.

Front Endocrinol (Lausanne). 2024-1-4

[10]
Glucose-Regulated Protein 78 Targeting ICG and DOX Loaded Hollow FeO Nanoparticles for Hepatocellular Carcinoma Diagnosis and Therapy.

Int J Nanomedicine. 2024

本文引用的文献

[1]
Ferroptosis-driven nanotherapeutics for cancer treatment.

J Control Release. 2020-3-10

[2]
Co-Administration Of iRGD Enhances Tumor-Targeted Delivery And Anti-Tumor Effects Of Paclitaxel-Loaded PLGA Nanoparticles For Colorectal Cancer Treatment.

Int J Nanomedicine. 2019-11-1

[3]
Dual GSH-exhausting sorafenib loaded manganese-silica nanodrugs for inducing the ferroptosis of hepatocellular carcinoma cells.

Int J Pharm. 2019-10-31

[4]
Recent Progress in Ferroptosis Inducers for Cancer Therapy.

Adv Mater. 2019-10-8

[5]
FePt@MnO-Based Nanotheranostic Platform with Acidity-Triggered Dual-Ions Release for Enhanced MR Imaging-Guided Ferroptosis Chemodynamic Therapy.

ACS Appl Mater Interfaces. 2019-10-10

[6]
BHQ-Cyanine-Based "Off-On" Long-Circulating Assembly as a Ferroptosis Amplifier for Cancer Treatment: A Lipid-Peroxidation Burst Device.

ACS Appl Mater Interfaces. 2019-11-11

[7]
Mitochondrial membrane anchored photosensitive nano-device for lipid hydroperoxides burst and inducing ferroptosis to surmount therapy-resistant cancer.

Theranostics. 2019-8-14

[8]
Doxorubicin-loaded nanoscale metal-organic framework for tumor-targeting combined chemotherapy and chemodynamic therapy.

Biomater Sci. 2019-8-23

[9]
iRGD: A Promising Peptide for Cancer Imaging and a Potential Therapeutic Agent for Various Cancers.

J Oncol. 2019-6-26

[10]
Multifunctional iron-based Metal-Organic framework as biodegradable nanozyme for microwave enhancing dynamic therapy.

Biomaterials. 2019-5-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索