Suppr超能文献

基于深度学习的从体积图像直接重建 3D 细胞力。

Deep-learning-based 3D cellular force reconstruction directly from volumetric images.

机构信息

Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.

Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China; Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing, China.

出版信息

Biophys J. 2022 Jun 7;121(11):2180-2192. doi: 10.1016/j.bpj.2022.04.028. Epub 2022 Apr 28.

Abstract

The forces exerted by single cells in the three-dimensional (3D) environments play a crucial role in modulating cellular functions and behaviors closely related to physiological and pathological processes. Cellular force microscopy (CFM) provides a feasible solution for quantifying mechanical interactions, which usually regains cellular forces from deformation information of extracellular matrices embedded with fluorescent beads. Owing to computational complexity, traditional 3D-CFM is usually extremely time consuming, which makes it challenging for efficient force recovery and large-scale sample analysis. With the aid of deep neural networks, this study puts forward a novel, data-driven 3D-CFM to reconstruct 3D cellular force fields directly from volumetric images with random fluorescence patterns. The deep-learning-based network is established through stacking deep convolutional neural networks (DCNN) and specific function layers. Some necessary physical information associated with constitutive relation of extracellular matrix material is coupled to the data-driven network. The mini-batch stochastic-gradient-descent and back-propagation algorithms are introduced to ensure its convergence and training efficiency. The networks not only have good generalization ability and robustness but also can recover 3D cellular forces directly from the input fluorescence image pairs. Particularly, the computational efficiency of the deep-learning-based network is at least one to two orders of magnitude higher than that of traditional 3D-CFM. This study provides a novel scheme for developing high-performance 3D-CFM to quantitatively characterize mechanical interactions between single cells and surrounding extracellular matrices, which is of vital importance for quantitative investigations in biomechanics and mechanobiology.

摘要

单细胞在三维(3D)环境中所施加的力对于调节与生理和病理过程密切相关的细胞功能和行为起着至关重要的作用。细胞力显微镜(CFM)为量化机械相互作用提供了一种可行的解决方案,通常通过从嵌入荧光珠的细胞外基质的变形信息中恢复细胞力。由于计算复杂性,传统的 3D-CFM 通常非常耗时,这使得高效的力恢复和大规模样本分析具有挑战性。在深度学习的帮助下,本研究提出了一种新颖的、基于数据驱动的 3D-CFM,可直接从具有随机荧光模式的体积图像中重建 3D 细胞力场。基于深度学习的网络通过堆叠深卷积神经网络(DCNN)和特定功能层来建立。一些与细胞外基质材料本构关系相关的必要物理信息被耦合到数据驱动网络中。采用小批量随机梯度下降和反向传播算法来保证其收敛性和训练效率。该网络不仅具有良好的泛化能力和鲁棒性,而且可以直接从输入的荧光图像对中恢复 3D 细胞力。特别是,基于深度学习的网络的计算效率至少比传统的 3D-CFM 高一个到两个数量级。本研究为开发高性能 3D-CFM 提供了一种新方案,以定量表征单细胞与周围细胞外基质之间的机械相互作用,这对于定量生物力学和机械生物学研究至关重要。

相似文献

1
Deep-learning-based 3D cellular force reconstruction directly from volumetric images.
Biophys J. 2022 Jun 7;121(11):2180-2192. doi: 10.1016/j.bpj.2022.04.028. Epub 2022 Apr 28.
3
DeepOrganNet: On-the-Fly Reconstruction and Visualization of 3D / 4D Lung Models from Single-View Projections by Deep Deformation Network.
IEEE Trans Vis Comput Graph. 2020 Jan;26(1):960-970. doi: 10.1109/TVCG.2019.2934369. Epub 2019 Aug 22.
4
Deep learning based object tracking for 3D microstructure reconstruction.
Methods. 2022 Aug;204:172-178. doi: 10.1016/j.ymeth.2022.04.001. Epub 2022 Apr 9.
5
Three-dimensional convolutional neural networks for simultaneous dual-tracer PET imaging.
Phys Med Biol. 2019 Sep 19;64(18):185016. doi: 10.1088/1361-6560/ab3103.
6
Computationally efficient deep neural network for computed tomography image reconstruction.
Med Phys. 2019 Nov;46(11):4763-4776. doi: 10.1002/mp.13627. Epub 2019 Sep 21.
7
A deep learning approach for pose estimation from volumetric OCT data.
Med Image Anal. 2018 May;46:162-179. doi: 10.1016/j.media.2018.03.002. Epub 2018 Mar 10.
10
3D deeply supervised network for automated segmentation of volumetric medical images.
Med Image Anal. 2017 Oct;41:40-54. doi: 10.1016/j.media.2017.05.001. Epub 2017 May 8.

引用本文的文献

1
Inferring cellular contractile forces and work using deep morphology traction microscopy.
Biophys J. 2024 Sep 17;123(18):3217-3230. doi: 10.1016/j.bpj.2024.07.020. Epub 2024 Jul 19.
2
High-Throughput Electromechanical Coupling Chip Systems for Real-Time 3D Invasion/Migration Assay of Cells.
Adv Sci (Weinh). 2023 Jul;10(19):e2300882. doi: 10.1002/advs.202300882. Epub 2023 Apr 23.

本文引用的文献

1
The Cell as Matter: Connecting Molecular Biology to Cellular Functions.
Matter. 2021 Jun 2;4(6):1863-1891. doi: 10.1016/j.matt.2021.03.013.
2
Extracellular matrix stiffness modulates host-bacteria interactions and antibiotic therapy of bacterial internalization.
Biomaterials. 2021 Oct;277:121098. doi: 10.1016/j.biomaterials.2021.121098. Epub 2021 Aug 27.
3
Traction force microscopy by deep learning.
Biophys J. 2021 Aug 3;120(15):3079-3090. doi: 10.1016/j.bpj.2021.06.011. Epub 2021 Jun 30.
4
Knowledge extraction and transfer in data-driven fracture mechanics.
Proc Natl Acad Sci U S A. 2021 Jun 8;118(23). doi: 10.1073/pnas.2104765118.
5
Two-dimensional TIRF-SIM-traction force microscopy (2D TIRF-SIM-TFM).
Nat Commun. 2021 Apr 12;12(1):2169. doi: 10.1038/s41467-021-22377-9.
6
A Novel Pyramid Network with Feature Fusion and Disentanglement for Object Detection.
Comput Intell Neurosci. 2021 Mar 15;2021:6685954. doi: 10.1155/2021/6685954. eCollection 2021.
8
3D mesenchymal cell migration is driven by anterior cellular contraction that generates an extracellular matrix prestrain.
Dev Cell. 2021 Mar 22;56(6):826-841.e4. doi: 10.1016/j.devcel.2021.02.017. Epub 2021 Mar 10.
9
3D In Vitro Model (R)evolution: Unveiling Tumor-Stroma Interactions.
Trends Cancer. 2021 Mar;7(3):249-264. doi: 10.1016/j.trecan.2020.10.009. Epub 2020 Nov 18.
10
Epifluorescence-based three-dimensional traction force microscopy.
Sci Rep. 2020 Oct 6;10(1):16599. doi: 10.1038/s41598-020-72931-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验