The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, P. R. China.
State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery and Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China.
Adv Healthc Mater. 2022 Jul;11(13):e2200246. doi: 10.1002/adhm.202200246. Epub 2022 May 6.
Mesenchymal stem cell (MSC) aggregates incorporated with microparticles of functional materials have shown promising prospects in the field of cell therapy for cartilage repair. Given the importance of cadherins in modulating the stemness and chondrogenesis of MSCs, the use of transforming growth factor β1 (TGFβ1)-loaded poly (lactic-co-glycolic acid) (PLGA)-based composite microparticles inspired by duo cadherin (human E- and N-cadherin fusion proteins) to construct a bioartificial stem cell niche in engineered human MSC (hMSC) aggregates to promote chondrogenesis and cartilage regeneration is proposed. The hE/N-cadherin-functionalized PLGA/chitosan-heparin-TGFβ1 (Duo hE/N-cad@P/C-h-TGFβ1) microparticles spatiotemporally upregulates the endogenous E/N-cadherin expression of hMSC aggregates which further amplifies the chondrogenic differentiation and modulate paracrine and anti-inflammatory functions of hMSCs toward constructing a favorable microenvironment for chondrogenesis. The Duo hE/N-cad@P/C-h-TGFβ1 microparticles finely regulate the response of hMSCs to biochemical and mechanical signal stimuli in the microenvironment through the cadherin/catenin-Yes-associated protein signal transduction, which inhibits the hypertrophy of hMSC-derived chondrocytes. Furthermore, immunofluorescent and histological examinations show that the Duo hE/N-cad@P/C-h-TGFβ1 microparticles significantly improve regeneration of cartilage and subchondral bone in vivo. Together, the application of duo cadherin-functionalized microparticles is considered an innovative material-wise approach to exogenously activate hMSC aggregates for functional applications in regenerative medicine.
间质干细胞 (MSC) 聚集体与功能材料的微粒结合,在软骨修复的细胞治疗领域显示出了广阔的前景。鉴于钙粘蛋白在调节 MSC 的干性和软骨生成中的重要性,使用转化生长因子 β1 (TGFβ1) 负载的聚 (乳酸-共-乙醇酸) (PLGA) 基复合材料微粒,受双钙粘蛋白 (人 E-和 N-钙粘蛋白融合蛋白) 的启发,构建工程化人 MSC (hMSC) 聚集体中的生物人工干细胞龛,以促进软骨生成和软骨再生。hE/N-钙粘蛋白功能化 PLGA/壳聚糖-肝素-TGFβ1 (Duo hE/N-cad@P/C-h-TGFβ1) 微粒时空上调 hMSC 聚集体的内源性 E/N-钙粘蛋白表达,进一步放大软骨分化,并调节 hMSC 的旁分泌和抗炎功能,构建有利于软骨生成的微环境。Duo hE/N-cad@P/C-h-TGFβ1 微粒通过钙粘蛋白/连环蛋白-Yes 相关蛋白信号转导精细调节 hMSC 对微环境中生化和机械信号刺激的反应,抑制 hMSC 来源的软骨细胞肥大。此外,免疫荧光和组织学检查表明,Duo hE/N-cad@P/C-h-TGFβ1 微粒显著改善了体内软骨和软骨下骨的再生。总之,双钙粘蛋白功能化微粒的应用被认为是一种创新的材料方法,可外源性激活 hMSC 聚集体,用于再生医学中的功能应用。