Suppr超能文献

在胶质瘤人工智能研究中进行放射组学特征提取之前的 MRI 强度标准化——系统评价。

Intensity standardization of MRI prior to radiomic feature extraction for artificial intelligence research in glioma-a systematic review.

机构信息

Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK.

Leeds Institute of Medical Research, University of Leeds, Leeds, UK.

出版信息

Eur Radiol. 2022 Oct;32(10):7014-7025. doi: 10.1007/s00330-022-08807-2. Epub 2022 Apr 29.

Abstract

OBJECTIVES

Radiomics is a promising avenue in non-invasive characterisation of diffuse glioma. Clinical translation is hampered by lack of reproducibility across centres and difficulty in standardising image intensity in MRI datasets. The study aim was to perform a systematic review of different methods of MRI intensity standardisation prior to radiomic feature extraction.

METHODS

MEDLINE, EMBASE, and SCOPUS were searched for articles meeting the following eligibility criteria: MRI radiomic studies where one method of intensity normalisation was compared with another or no normalisation, and original research concerning patients diagnosed with diffuse gliomas. Using PRISMA criteria, data were extracted from short-listed studies including number of patients, MRI sequences, validation status, radiomics software, method of segmentation, and intensity standardisation. QUADAS-2 was used for quality appraisal.

RESULTS

After duplicate removal, 741 results were returned from database and reference searches and, from these, 12 papers were eligible. Due to a lack of common pre-processing and different analyses, a narrative synthesis was sought. Three different intensity standardisation techniques have been studied: histogram matching (5/12), limiting or rescaling signal intensity (8/12), and deep learning (1/12)-only two papers compared different methods. From these studies, histogram matching produced the more reliable features compared to other methods of altering MRI signal intensity.

CONCLUSION

Multiple methods of intensity standardisation have been described in the literature without clear consensus. Further research that directly compares different methods of intensity standardisation on glioma MRI datasets is required.

KEY POINTS

• Intensity standardisation is a key pre-processing step in the development of robust radiomic signatures to evaluate diffuse glioma. • A minority of studies compared the impact of two or more methods. • Further research is required to directly compare multiple methods of MRI intensity standardisation on glioma datasets.

摘要

目的

放射组学是一种有前途的无创性弥漫性胶质瘤特征描述方法。由于各中心之间缺乏可重复性,以及在 MRI 数据集上标准化图像强度的困难,其临床转化受到阻碍。本研究旨在对放射组学特征提取前的不同 MRI 强度标准化方法进行系统评价。

方法

通过 MEDLINE、EMBASE 和 SCOPUS 搜索符合以下纳入标准的文章:对一种强度归一化方法与另一种方法或无归一化方法进行比较的 MRI 放射组学研究,以及涉及弥漫性胶质瘤患者的原始研究。使用 PRISMA 标准,从入选研究中提取数据,包括患者数量、MRI 序列、验证状态、放射组学软件、分割方法和强度标准化。使用 QUADAS-2 进行质量评估。

结果

在去除重复项后,从数据库和参考文献搜索中返回了 741 个结果,其中 12 篇论文符合条件。由于缺乏共同的预处理和不同的分析,因此寻求了叙述性综合。已经研究了三种不同的强度标准化技术:直方图匹配(5/12)、限制或重新调整信号强度(8/12)和深度学习(1/12)-只有两篇论文比较了不同的方法。在这些研究中,与其他改变 MRI 信号强度的方法相比,直方图匹配产生了更可靠的特征。

结论

文献中描述了多种强度标准化方法,但没有明确的共识。需要进一步研究,直接比较胶质瘤 MRI 数据集上不同的强度标准化方法。

关键点

• 强度标准化是开发用于评估弥漫性胶质瘤的稳健放射组学特征的关键预处理步骤。• 少数研究比较了两种或更多方法的影响。• 需要进一步研究,直接比较胶质瘤数据集上的多种 MRI 强度标准化方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cce/9474349/94a2598a7ccd/330_2022_8807_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验