Suppr超能文献

图像处理对磁共振成像放射组学特征的影响。

Influence of Image Processing on Radiomic Features From Magnetic Resonance Imaging.

机构信息

From the Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany.

Institute of Diagnostic and Interventional Radiology, Technical University of Munich, School of Medicine, Munich, Germany.

出版信息

Invest Radiol. 2023 Mar 1;58(3):199-208. doi: 10.1097/RLI.0000000000000921. Epub 2022 Sep 6.

Abstract

OBJECTIVE

Before implementing radiomics in routine clinical practice, comprehensive knowledge about the repeatability and reproducibility of radiomic features is required. The aim of this study was to systematically investigate the influence of image processing parameters on radiomic features from magnetic resonance imaging (MRI) in terms of feature values as well as test-retest repeatability.

MATERIALS AND METHODS

Utilizing a phantom consisting of 4 onions, 4 limes, 4 kiwifruits, and 4 apples, we acquired a test-retest dataset featuring 3 of the most commonly used MRI sequences on a 3 T scanner, namely, a T1-weighted, a T2-weighted, and a fluid-attenuated inversion recovery sequence, each at high and low resolution. After semiautomatic image segmentation, image processing with systematic variation of image processing parameters was performed, including spatial resampling, intensity discretization, and intensity rescaling. For each respective image processing setting, a total of 45 radiomic features were extracted, corresponding to the following 7 matrices/feature classes: conventional indices, histogram matrix, shape matrix, gray-level zone length matrix, gray-level run length matrix, neighboring gray-level dependence matrix, and gray-level cooccurrence matrix. Systematic differences of individual features between different resampling steps were assessed using 1-way analysis of variance with Tukey-type post hoc comparisons to adjust for multiple testing. Test-retest repeatability of radiomic features was measured using the concordance correlation coefficient, dynamic range, and intraclass correlation coefficient.

RESULTS

Image processing influenced radiological feature values. Regardless of the acquired sequence and feature class, significant differences ( P < 0.05) in feature values were found when the size of the resampled voxels was too large, that is, bigger than 3 mm. Almost all higher-order features depended strongly on intensity discretization. The effects of intensity rescaling were negligible except for some features derived from T1-weighted sequences. For all sequences, the percentage of repeatable features (concordance correlation coefficient and dynamic range ≥ 0.9) varied considerably depending on the image processing settings. The optimal image processing setting to achieve the highest percentage of stable features varied per sequence. Irrespective of image processing, the fluid-attenuated inversion recovery sequence in high-resolution overall yielded the highest number of stable features in comparison with the other sequences (89% vs 64%-78% for the respective optimal image processing settings). Across all sequences, the most repeatable features were generally obtained for a spatial resampling close to the originally acquired voxel size and an intensity discretization to at least 32 bins.

CONCLUSION

Variation of image processing parameters has a significant impact on the values of radiomic features as well as their repeatability. Furthermore, the optimal image processing parameters differ for each MRI sequence. Therefore, it is recommended that these processing parameters be determined in corresponding test-retest scans before clinical application. Extensive repeatability, reproducibility, and validation studies as well as standardization are required before quantitative image analysis and radiomics can be reliably translated into routine clinical care.

摘要

目的

在将放射组学应用于常规临床实践之前,需要全面了解放射组学特征的可重复性和再现性。本研究的目的是系统地研究图像处理参数对磁共振成像(MRI)中放射组学特征的影响,包括特征值以及测试-再测试可重复性。

材料与方法

我们利用由 4 个洋葱、4 个酸橙、4 个猕猴桃和 4 个苹果组成的体模,在 3T 扫描仪上获取了一组具有 3 个最常用 MRI 序列的测试-再测试数据集,即 T1 加权、T2 加权和液体衰减反转恢复序列,每个序列均具有高分辨率和低分辨率。在半自动图像分割后,我们进行了系统的图像处理参数变化,包括空间重采样、强度离散化和强度重新缩放。对于每个图像处理设置,总共提取了 45 个放射组学特征,对应于以下 7 个矩阵/特征类:常规指数、直方图矩阵、形状矩阵、灰度区长度矩阵、灰度游程长度矩阵、相邻灰度依赖矩阵和灰度共生矩阵。使用单因素方差分析评估不同重采样步骤之间个体特征的系统差异,并使用 Tukey 型事后比较进行调整以进行多重检验。使用一致性相关系数、动态范围和组内相关系数测量放射组学特征的测试-再测试可重复性。

结果

图像处理影响了放射学特征值。无论采集的序列和特征类如何,当重采样体素的大小过大(即大于 3mm)时,都会发现特征值存在显著差异(P<0.05)。几乎所有高阶特征都强烈依赖于强度离散化。除了一些来自 T1 加权序列的特征外,强度缩放的影响可以忽略不计。对于所有序列,根据图像处理设置,可重复特征的百分比(一致性相关系数和动态范围≥0.9)变化很大。实现稳定特征的最佳图像处理设置因序列而异。无论图像处理如何,与其他序列相比,高分辨率的液体衰减反转恢复序列总体上产生了更高比例的稳定特征(对于各自的最佳图像处理设置,为 89%比 64%-78%)。在所有序列中,通常在接近原始采集体素大小的空间重采样和至少 32 个灰度级的强度离散化下获得最可重复的特征。

结论

图像处理参数的变化对放射组学特征的值及其可重复性有显著影响。此外,每个 MRI 序列的最佳图像处理参数都不同。因此,建议在临床应用前在相应的测试-再测试扫描中确定这些处理参数。在定量图像分析和放射组学能够可靠地转化为常规临床护理之前,需要进行广泛的可重复性、再现性和验证研究以及标准化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验