Suppr超能文献

基于二维自由手超声的外周动脉成像拉伸重建。

Stretched reconstruction based on 2D freehand ultrasound for peripheral artery imaging.

机构信息

Therenva, 35000, Rennes, France.

Univ Rennes, CHU Rennes, CLCC Eugène Marquis, Inserm, LTSI - UMR 1099, F-35000, Rennes, France.

出版信息

Int J Comput Assist Radiol Surg. 2022 Jul;17(7):1281-1288. doi: 10.1007/s11548-022-02636-w. Epub 2022 Apr 29.

Abstract

PURPOSE

Endovascular revascularization is becoming the established first-line treatment of peripheral artery disease (PAD). Ultrasound (US) imaging is used pre-operatively to make the first diagnosis and is often followed by a CT angiography (CTA). US provides a non-invasive and non-ionizing method for the visualization of arteries and lesion(s). This paper proposes to generate a 3D stretched reconstruction of the femoral artery from a sequence of 2D US B-mode frames.

METHODS

The proposed method is solely image-based. A Mask-RCNN is used to segment the femoral artery on the 2D US frames. In-plane registration is achieved by aligning the artery segmentation masks. Subsequently, a convolutional neural network (CNN) predicts the out-of-plane translation. After processing all input frames and re-sampling the volume according to the vessel's centerline, the whole femoral artery can be visualized on a single slice of the resulting stretched view.

RESULTS

111 tracked US sequences of the left or right femoral arteries have been acquired on 18 healthy volunteers. fivefold cross-validation was used to validate our method and achieve an absolute mean error of 0.28 ± 0.28 mm and a median drift error of 8.98%.

CONCLUSION

This study demonstrates the feasibility of freehand US stretched reconstruction following a deep learning strategy for imaging the femoral artery. Stretched views are generated and can give rich diagnosis information in the pre-operative planning of PAD procedures. This visualization could replace traditional 3D imaging in the pre-operative planning process, and during the pre-operative diagnosis phase, to identify, locate, and size stenosis/thrombosis lesions.

摘要

目的

血管腔内血管重建术正成为外周动脉疾病(PAD)的既定一线治疗方法。超声(US)成像用于术前初次诊断,通常随后进行 CT 血管造影(CTA)。US 提供了一种用于可视化动脉和病变的非侵入性和非电离方法。本文提出从一系列二维 US B 模式帧生成股动脉的 3D 拉伸重建。

方法

所提出的方法完全基于图像。使用 Mask-RCNN 对二维 US 帧上的股动脉进行分割。通过对齐动脉分割蒙版来实现平面内配准。随后,卷积神经网络(CNN)预测了平面外平移。处理所有输入帧并根据血管中心线对体积进行重采样后,可以在生成的拉伸视图的单个切片上可视化整个股动脉。

结果

在 18 名健康志愿者中采集了 111 个左或右股动脉的跟踪 US 序列。使用五倍交叉验证来验证我们的方法,得到绝对平均误差为 0.28±0.28mm,中位数漂移误差为 8.98%。

结论

本研究证明了基于深度学习策略对股动脉进行自由手 US 拉伸重建的可行性。生成了拉伸视图,可以在 PAD 手术的术前规划中提供丰富的诊断信息。这种可视化可以替代传统的 3D 成像,在术前规划过程中以及术前诊断阶段,用于识别、定位和测量狭窄/血栓病变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验