Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Brussels, Belgium.
Institut de Recherche Expérimentale et Clinique, IREC Imaging Platform (2IP), Université catholique de Louvain, Brussels, Belgium.
Am J Physiol Heart Circ Physiol. 2022 Jun 1;322(6):H1032-H1043. doi: 10.1152/ajpheart.00664.2021. Epub 2022 Apr 29.
Our group previously demonstrated that an excess of nutrients, as observed in diabetes, provokes an increase in cardiac protein acetylation responsible for a reduced insulin-stimulated translocation of the glucose transporter GLUT4 to the plasma membrane. The acetylated proteins involved in this event have yet not been identified. α-Tubulin is a promising candidate as a major cytoskeleton component involved, among other things, in the translocation of GLUT4-containing vesicles from their intracellular pools toward the plasma membrane. Moreover, α-tubulin is known to be acetylated, Lys40 (K40) being its best characterized acetylated residue. The present work sought to evaluate the impact of α-tubulin K40 acetylation on cardiac glucose entry, with a particular interest in GLUT4 translocation. First, we observed that a mouse model of high-fat diet-induced obesity presented an increase in cardiac α-tubulin K40 acetylation level. We next showed that treatment of insulin-sensitive primary cultured adult rat cardiomyocytes with tubacin, a specific tubulin acetylation inducer, reduced insulin-stimulated glucose uptake and GLUT4 translocation. Conversely, decreasing α-tubulin K40 acetylation by expressing a nonacetylable dominant form of α-tubulin (mCherry α-tubulin K40A mutant) remarkably intensified insulin-induced glucose transport. Finally, mCherry α-tubulin K40A expression similarly improved glucose transport in insulin-resistant cardiomyocytes or after AMP-activated protein kinase activation. Taken together, our study demonstrates that modulation of α-tubulin K40 acetylation level affects glucose transport in cardiomyocytes, offering new putative therapeutic insights regarding modulation of glucose metabolism in insulin-resistant and diabetic hearts. Acetylation level of α-tubulin on K40 is increased in the heart of a diet-induced mouse model of type 2 diabetes. Pharmacological stimulation of α-tubulin K40 acetylation lowers insulin-mediated GLUT4 vesicles translocation to the plasma membrane, reducing glucose transport. Expressing a nonacetylable dominant form of α-tubulin boosts glucose uptake in both insulin-sensitive and insulin-resistant cardiomyocytes.
我们的研究小组先前已经证明,糖尿病患者体内观察到的营养过剩会导致心肌蛋白乙酰化增加,从而减少葡萄糖转运体 GLUT4 向质膜的胰岛素刺激易位。涉及此事件的乙酰化蛋白尚未确定。α-微管蛋白是一种很有前途的候选蛋白,它是一种主要的细胞骨架成分,除其他外,还参与 GLUT4 含囊泡从其细胞内池向质膜的易位。此外,α-微管蛋白已知可被乙酰化,赖氨酸 40(K40)是其特征性乙酰化残基。本研究旨在评估 α-微管蛋白 K40 乙酰化对心脏葡萄糖摄取的影响,特别关注 GLUT4 易位。首先,我们观察到高脂肪饮食诱导的肥胖症小鼠模型的心脏α-微管蛋白 K40 乙酰化水平增加。接下来,我们表明,用特异性微管蛋白乙酰化诱导剂 tubacin 处理胰岛素敏感的原代培养成年大鼠心肌细胞,可降低胰岛素刺激的葡萄糖摄取和 GLUT4 易位。相反,通过表达不可乙酰化的α-微管蛋白(mCherry α-tubulin K40A 突变体)的显性形式来降低α-微管蛋白 K40 乙酰化,可显著增强胰岛素诱导的葡萄糖转运。最后,mCherry α-tubulin K40A 表达同样改善了胰岛素抵抗心肌细胞或 AMP 激活蛋白激酶激活后的葡萄糖转运。总之,我们的研究表明,调节α-微管蛋白 K40 乙酰化水平会影响心肌细胞的葡萄糖转运,为调节胰岛素抵抗和糖尿病心脏中的葡萄糖代谢提供了新的潜在治疗思路。2 型糖尿病饮食诱导的小鼠模型心脏中α-微管蛋白 K40 的乙酰化水平增加。α-微管蛋白 K40 的药理学刺激降低了胰岛素介导的 GLUT4 囊泡向质膜的易位,从而减少葡萄糖转运。表达不可乙酰化的α-微管蛋白显性形式可增强胰岛素敏感和胰岛素抵抗心肌细胞的葡萄糖摄取。