Suppr超能文献

定制银纳米线纳米复合材料界面以实现透明导体的卓越拉伸性、耐久性和稳定性。

Tailoring Silver Nanowire Nanocomposite Interfaces to Achieve Superior Stretchability, Durability, and Stability in Transparent Conductors.

作者信息

Liu Yang, Xu Xin, Wei Yu, Chen Yongsong, Gao Meng, Zhang Zhengjian, Si Chuanling, Li Hongpeng, Ji Xinyi, Liang Jiajie

机构信息

College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.

College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, P.R. China.

出版信息

Nano Lett. 2022 May 11;22(9):3784-3792. doi: 10.1021/acs.nanolett.2c00876. Epub 2022 Apr 29.

Abstract

Silver nanowires (AgNWs) have been considered as a promising candidate for transparent stretchable conductors (TSCs). However, the strong interface mismatch of stiff AgNWs and elastic substrates leads to the stress concentration at their interface and ultimately the low stretchability and poor durability of TSCs. Here, to address the interfacial mismatch of AgNWs-based TSCs we put forward a universal interface tailoring strategy that introduces the mercapto compound as the intermediate cross-linked layer. The mercapto compound strongly interacts with the AgNWs, forming a dense protective layer on their surface to improve their corrosion resistance, and reacts with the polymer substrate, forming a buffer layer to release the concentrated stress. As a result, the optimized TSCs showed superior stretchability (160%), exceptional durability (230 000 cycles), competent optoelectrical performance (18.0 ohm·sq with a transmittance of 86.5%), and prominent stability. This work provides clear guidance and a strong impetus for the development of transparent stretchable electronics.

摘要

银纳米线(AgNWs)被认为是透明可拉伸导体(TSCs)的一个有前途的候选材料。然而,刚性的AgNWs与弹性基板之间强烈的界面失配会导致其界面处的应力集中,最终导致TSCs的低拉伸性和耐久性差。在此,为了解决基于AgNWs的TSCs的界面失配问题,我们提出了一种通用的界面剪裁策略,即引入巯基化合物作为中间交联层。巯基化合物与AgNWs强烈相互作用,在其表面形成致密的保护层以提高其耐腐蚀性,并与聚合物基板反应,形成缓冲层以释放集中的应力。结果,优化后的TSCs表现出优异的拉伸性(160%)、出色的耐久性(230000次循环)、良好的光电性能(方阻为18.0 ohm·sq,透过率为86.5%)和卓越的稳定性。这项工作为透明可拉伸电子器件的发展提供了明确的指导和强大的推动力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验