IEEE Trans Cybern. 2023 Jul;53(7):4306-4319. doi: 10.1109/TCYB.2022.3166539. Epub 2023 Jun 15.
Network embedding which aims to learn a low dimensional representation of nodes is a powerful technique for network analysis. While network embedding for networks with complete attributes has been widely investigated, in many real-world applications the attributes of partial nodes are unobserved (i.e., missing) due to privacy concern or resource limit. Very recently, several network embedding methods have been proposed for attribute-missing networks. They first complete the missing attributes and then use the complemented network to learn network embedding. The parameters of these two processes cannot be adjusted by each other, resulting in compromised results. To address this problem, we propose a unified model in which the process of completing missing attributes and the process of learning embedding are not separated but closely intertwined. Being specific, completing missing attributes is under the guidance of learning network representation via mutual information maximization, and the complemented attributes directly enter network representation module which will generate further feedback for completing missing attributes. We further impose attribute-structure relationship constraint for completing missing attributes by designing a new generative adversarial networks (GANs) model. To the best of our knowledge, this is the first unified model for attribute-missing network embedding. Empirical results on real-world datasets show the superiority of our new method over other state-of-the-art methods on four network analysis tasks, including node classification, node clustering, link prediction, and network visualization.
网络嵌入旨在学习节点的低维表示,是网络分析的强大技术。虽然已经广泛研究了具有完整属性的网络的网络嵌入,但在许多实际应用中,由于隐私问题或资源限制,部分节点的属性是不可观测的(即缺失)。最近,已经提出了几种用于属性缺失网络的网络嵌入方法。它们首先完成缺失的属性,然后使用补充的网络来学习网络嵌入。这两个过程的参数不能相互调整,导致结果不佳。为了解决这个问题,我们提出了一个统一的模型,其中完成缺失属性的过程和学习嵌入的过程不是分开的,而是紧密交织的。具体来说,通过最大化互信息来学习网络表示,完成缺失属性,而补充的属性直接进入网络表示模块,这将为完成缺失属性生成进一步的反馈。我们通过设计一个新的生成对抗网络(GANs)模型,为完成缺失属性施加属性-结构关系约束。据我们所知,这是第一个用于属性缺失网络嵌入的统一模型。在真实数据集上的实验结果表明,我们的新方法在四个网络分析任务(包括节点分类、节点聚类、链路预测和网络可视化)上优于其他最先进的方法。