Suppr超能文献

WalkGAN:基于序列的生成对抗网络的网络表示学习

WalkGAN: Network Representation Learning With Sequence-Based Generative Adversarial Networks.

作者信息

Jin Taisong, Yang Xixi, Yu Zhengtao, Luo Han, Zhang Yongmei, Jie Feiran, Zeng Xiangxiang, Jiang Min

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Apr;35(4):5684-5694. doi: 10.1109/TNNLS.2022.3208914. Epub 2024 Apr 4.

Abstract

Network representation learning, also known as network embedding, aims to learn the low-dimensional representations of vertices while capturing and preserving the network structure. For real-world networks, the edges that represent some important relationships between the vertices of a network may be missed and may result in degenerated performance. The existing methods usually treat missing edges as negative samples, thereby ignoring the true connections between two vertices in a network. To capture the true network structure effectively, we propose a novel network representation learning method called WalkGAN, where random walk scheme and generative adversarial networks (GAN) are incorporated into a network embedding framework. Specifically, WalkGAN leverages GAN to generate the synthetic sequences of the vertices that sufficiently simulate random walk on a network and further learn vertex representations from these vertex sequences. Thus, the unobserved links between the vertices are inferred with high probability instead of treating them as nonexistence. Experimental results on the benchmark network datasets demonstrate that WalkGAN achieves significant performance improvements for vertex classification, link prediction, and visualization tasks.

摘要

网络表示学习,也称为网络嵌入,旨在学习顶点的低维表示,同时捕获和保留网络结构。对于现实世界的网络,代表网络顶点之间某些重要关系的边可能会缺失,这可能会导致性能退化。现有方法通常将缺失边视为负样本,从而忽略了网络中两个顶点之间的真实连接。为了有效地捕获真实的网络结构,我们提出了一种名为WalkGAN的新颖网络表示学习方法,该方法将随机游走方案和生成对抗网络(GAN)纳入网络嵌入框架。具体而言,WalkGAN利用GAN生成顶点的合成序列,这些序列充分模拟了网络上的随机游走,并进一步从这些顶点序列中学习顶点表示。因此,顶点之间未观察到的链接被高概率推断出来,而不是将它们视为不存在。在基准网络数据集上的实验结果表明,WalkGAN在顶点分类、链接预测和可视化任务上取得了显著的性能提升。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验