Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA.
Department of Statistics, Boston University, Boston, Massachusetts, USA.
Stat Med. 2022 Jul 30;41(17):3321-3335. doi: 10.1002/sim.9419. Epub 2022 Apr 29.
The Finkelstein and Schoenfeld (FS) test is a popular generalized pairwise comparison approach to analyze prioritized composite endpoints (eg, components are assessed in order of clinical importance). Power and sample size estimation for the FS test, however, are generally done via simulation studies. This simulation approach can be extremely computationally burdensome, compounded by increasing number of composite endpoints and with increasing sample size. Here we propose an analytical solution to calculate power and sample size for commonly encountered two-component hierarchical composite endpoints. The power formulas are derived assuming underlying distributions in each of the component outcomes on the population level, which provide a computationally efficient and practical alternative to the standard simulation approach. Monte Carlo simulation results demonstrate that performance of the proposed power formulas are consistent with that of the simulation approach, and have generally desirable objective properties including robustness to mis-specified distributional assumptions. We demonstrate the application of the proposed formulas by calculating power and sample size for the Transthyretin Amyloidosis Cardiomyopathy Clinical Trial.
芬克尔斯坦和舍恩菲尔德(FS)检验是一种广泛应用的广义成对比较方法,用于分析优先复合终点(例如,按临床重要性顺序评估各组成部分)。然而,FS 检验的功效和样本量估计通常通过模拟研究来完成。这种模拟方法可能非常计算密集,随着复合终点数量的增加和样本量的增加而变得更加复杂。在这里,我们提出了一种分析解决方案,用于计算常见的两部分分层复合终点的功效和样本量。假设在人群水平上每个组成部分结局的潜在分布,推导出功效公式,为标准模拟方法提供了一种计算效率高且实用的替代方法。蒙特卡罗模拟结果表明,所提出的功效公式的性能与模拟方法一致,并且通常具有理想的客观特性,包括对分布假设的错误指定具有稳健性。我们通过计算转甲状腺素淀粉样变性心肌病临床试验的功效和样本量来演示所提出公式的应用。