Suppr超能文献

分层胜率。

The stratified win ratio.

作者信息

Dong Gaohong, Qiu Junshan, Wang Duolao, Vandemeulebroecke Marc

机构信息

a iStats Inc ., Long Island City , NY , USA.

b Division of Biometrics I , Office of Biostatistics, Center for Drug Evaluation and Research, US Food and Drug Administration , Silver Spring , MD , USA.

出版信息

J Biopharm Stat. 2018;28(4):778-796. doi: 10.1080/10543406.2017.1397007. Epub 2017 Nov 27.

Abstract

The win ratio was first proposed in 2012 by Pocock and his colleagues to analyze a composite endpoint while considering the clinical importance order and the relative timing of its components. It has attracted considerable attention since then, in applications as well as methodology. It is not uncommon that some clinical trials require a stratified analysis. In this article, we propose a stratified win ratio statistic in a similar way as the Mantel-Haenszel stratified odds ratio, derive a general form of its variance estimator with a plug-in of existing or potentially new variance/covariance estimators of the number of wins for the two treatment groups, and assess its statistical performance using simulation studies. Our simulations show that our proposed Mantel-Haenszel-type stratified win ratio performs similarly to the Mantel-Haenszel stratified odds ratio for the simplified situation when the win ratio reduces to the odds ratio, and our proposed stratified win ratio is preferred compared to the inverse-variance weighted win ratio and unweighted win ratio particularly when the data are sparse. We also formulate a homogeneity test following Cochran's approach that assesses whether the stratum-specific win ratios are homogeneous across strata, as this method is used frequently in meta-analyses and a better test for the win ratio homogeneity is not available yet.

摘要

胜率最早由波科克及其同事于2012年提出,用于分析复合终点,同时考虑其组成部分的临床重要性顺序和相对时间。从那时起,它在应用和方法学方面都引起了相当大的关注。一些临床试验需要进行分层分析的情况并不少见。在本文中,我们以与曼特尔 - 亨泽尔分层比值比类似的方式提出了一种分层胜率统计量,通过代入两个治疗组获胜次数的现有或潜在新的方差/协方差估计量来推导其方差估计量的一般形式,并使用模拟研究评估其统计性能。我们的模拟表明,在胜率简化为比值比的简化情况下,我们提出的曼特尔 - 亨泽尔型分层胜率与曼特尔 - 亨泽尔分层比值比表现相似,并且与逆方差加权胜率和未加权胜率相比,我们提出的分层胜率更受青睐,特别是在数据稀疏的情况下。我们还按照 Cochr an方法制定了一个齐性检验,以评估各层特定的胜率在各层之间是否齐性,因为这种方法在荟萃分析中经常使用,而且目前还没有更好的胜率齐性检验方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验