Suppr超能文献

基于 Pix2pixGAN 使用多谱段 CT 标签的锥形束 CT 图像质量通用提升策略。

A generalized image quality improvement strategy of cone-beam CT using multiple spectral CT labels in Pix2pix GAN.

机构信息

Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.

Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Gaoke International Innovation Center, Guangqiao Road, Guangming District, Shenzhen, Guangdong, People's Republic of China.

出版信息

Phys Med Biol. 2022 May 17;67(11). doi: 10.1088/1361-6560/ac6bda.

Abstract

The quantitative and routine imaging capabilities of cone-beam CT (CBCT) are hindered from clinical applications due to the severe shading artifacts of scatter contamination. The scatter correction methods proposed in the literature only consider the anatomy of the scanned objects while disregarding the impact of incident x-ray energy spectra. The multiple-spectral model is in urgent need for CBCT scatter estimation.In this work, we incorporate the multiple spectral diagnostic multidetector CT labels into the pixel-to-pixel (Pix2pix) GAN to estimate accurate scatter distributions from CBCT projections acquired at various imaging volume sizes and x-ray energy spectra. The Pix2pix GAN combines the residual network as the generator and the PatchGAN as the discriminator to construct the correspondence between the scatter-contaminated projection and scatter distribution. The network architectures and loss function of Pix2pix GAN are optimized to achieve the best performance on projection-to-scatter transition.The CBCT data of a head phantom and abdominal patients are applied to test the performance of the proposed method. The error of the corrected CBCT image using the proposed method is reduced from over 200 HU to be around 20 HU in both phantom and patient studies. The mean structural similarity index of the CT image is improved from 0.2 to around 0.9 after scatter correction using the proposed method compared with the MC-simulation method, which indicates a high similarity of the anatomy in the images before and after the proposed correction. The proposed method achieves higher accuracy of scatter estimation than using the Pix2pix GAN with the U-net generator.The proposed scheme is an effective solution to the multiple spectral CBCT scatter correction. The scatter-correction software using the proposed model will be available at:https://github.com/YangkangJiang/Cone-beam-CT-scatter-correction-tool.

摘要

锥形束 CT(CBCT)的定量和常规成像能力由于散射污染的严重阴影伪影而受到临床应用的阻碍。文献中提出的散射校正方法仅考虑了被扫描物体的解剖结构,而忽略了入射 X 射线能谱的影响。多谱模型迫切需要用于 CBCT 散射估计。在这项工作中,我们将多谱诊断多探测器 CT 标签纳入到像素到像素(Pix2pix)GAN 中,以从各种成像体积大小和 X 射线能谱获得的 CBCT 投影中估计准确的散射分布。Pix2pix GAN 结合残差网络作为生成器和 PatchGAN 作为鉴别器,构建散射污染投影与散射分布之间的对应关系。Pix2pix GAN 的网络结构和损失函数进行了优化,以在投影到散射转换上获得最佳性能。对头模和腹部患者的 CBCT 数据进行了应用,以测试所提出方法的性能。与 MC 模拟方法相比,使用所提出的方法校正后的 CBCT 图像的误差从超过 200HU 降低到约 20HU,在体模和患者研究中均如此。与使用 MC 模拟方法相比,使用所提出的方法校正后的 CT 图像的结构相似性指数的平均值从 0.2 提高到约 0.9,这表明校正前后图像的解剖结构具有很高的相似性。与使用 U-net 生成器的 Pix2pix GAN 相比,所提出的方法能够实现更高的散射估计精度。所提出的方案是解决多谱 CBCT 散射校正的有效方法。使用所提出的模型的散射校正软件将可在:https://github.com/YangkangJiang/Cone-beam-CT-scatter-correction-tool。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验