Suppr超能文献

使用基于患者特定分数的先验信息,从CBCT无监督贝叶斯生成合成CT。

Unsupervised Bayesian generation of synthetic CT from CBCT using patient-specific score-based prior.

作者信息

Peng Junbo, Gao Yuan, Chang Chih-Wei, Qiu Richard, Wang Tonghe, Kesarwala Aparna, Yang Kailin, Scott Jacob, Yu David, Yang Xiaofeng

机构信息

Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA.

Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.

出版信息

Med Phys. 2025 Apr;52(4):2238-2246. doi: 10.1002/mp.17572. Epub 2024 Dec 12.

Abstract

BACKGROUND

Cone-beam computed tomography (CBCT) scans, performed fractionally (e.g., daily or weekly), are widely utilized for patient alignment in the image-guided radiotherapy (IGRT) process, thereby making it a potential imaging modality for the implementation of adaptive radiotherapy (ART) protocols. Nonetheless, significant artifacts and incorrect Hounsfield unit (HU) values hinder their application in quantitative tasks such as target and organ segmentations and dose calculation. Therefore, acquiring CT-quality images from the CBCT scans is essential to implement online ART in clinical settings.

PURPOSE

This work aims to develop an unsupervised learning method using the patient-specific diffusion model for CBCT-based synthetic CT (sCT) generation to improve the image quality of CBCT.

METHODS

The proposed method is in an unsupervised framework that utilizes a patient-specific score-based model as the image prior alongside a customized total variation (TV) regularization to enforce coherence across different transverse slices. The score-based model is unconditionally trained using the same patient's planning CT (pCT) images to characterize the manifold of CT-quality images and capture the unique anatomical information of the specific patient. The efficacy of the proposed method was assessed on images from anatomical sites including head and neck (H&N) cancer, pancreatic cancer, and lung cancer. The performance of the proposed CBCT correction method was evaluated using quantitative metrics, including mean absolute error (MAE), non-uniformity (NU), and structural similarity index measure (SSIM). Additionally, the proposed algorithm was benchmarked against other unsupervised learning-based CBCT correction algorithms.

RESULTS

The proposed method significantly reduced various kinds of CBCT artifacts in the studies of H&N, pancreatic, and lung cancer patients. In the lung stereotactic body radiation therapy (SBRT) patient study, the MAE, NU, and SSIM were improved from 47 HU, 45 HU, and 0.58 in the original CBCT images to 13 HU, 14 dB, and 0.67 in the generated sCT images. Compared to other unsupervised learning-based algorithms, the proposed method demonstrated superior performance in artifact reduction.

CONCLUSIONS

The proposed unsupervised method can generate sCT from CBCT with reduced artifacts and precise HU values, enabling CBCT-guided segmentation and replanning for online ART.

摘要

背景

锥形束计算机断层扫描(CBCT)扫描以分次方式(例如每日或每周)进行,在图像引导放射治疗(IGRT)过程中被广泛用于患者定位,因此使其成为实施自适应放射治疗(ART)方案的一种潜在成像方式。尽管如此,显著的伪影和不正确的亨氏单位(HU)值阻碍了它们在诸如靶区和器官分割以及剂量计算等定量任务中的应用。因此,从CBCT扫描中获取CT质量的图像对于在临床环境中实施在线ART至关重要。

目的

本研究旨在开发一种无监督学习方法,利用基于患者的扩散模型生成基于CBCT的合成CT(sCT),以提高CBCT的图像质量。

方法

所提出的方法处于一个无监督框架中,该框架利用基于患者的基于分数的模型作为图像先验,同时采用定制的总变差(TV)正则化来增强不同横向切片之间的一致性。基于分数的模型使用同一患者的计划CT(pCT)图像进行无条件训练,以表征CT质量图像的流形并捕获特定患者的独特解剖信息。在包括头颈(H&N)癌、胰腺癌和肺癌等解剖部位的图像上评估了所提出方法的有效性。使用包括平均绝对误差(MAE)、不均匀性(NU)和结构相似性指数测量(SSIM)等定量指标评估了所提出的CBCT校正方法的性能。此外,将所提出的算法与其他基于无监督学习的CBCT校正算法进行了基准测试。

结果

在H&N、胰腺和肺癌患者的研究中,所提出的方法显著减少了各种CBCT伪影。在肺部立体定向体部放射治疗(SBRT)患者研究中,MAE、NU和SSIM从原始CBCT图像中的47 HU、45 HU和0.58分别提高到生成的sCT图像中的13 HU、14 dB和0.67。与其他基于无监督学习的算法相比,所提出的方法在减少伪影方面表现出卓越的性能。

结论

所提出的无监督方法可以从CBCT生成具有减少伪影和精确HU值的sCT,从而实现用于在线ART的CBCT引导的分割和重新计划。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验