Suppr超能文献

用于考虑证据综合中偏差项不确定性的稳健贝叶斯偏差调整随机效应模型。

A robust Bayesian bias-adjusted random effects model for consideration of uncertainty about bias terms in evidence synthesis.

机构信息

Centre for Environmental and Climate Science, Lund University, Lund, Sweden.

Department of Biology, Lund University, Lund, Sweden.

出版信息

Stat Med. 2022 Jul 30;41(17):3365-3379. doi: 10.1002/sim.9422. Epub 2022 Apr 29.

Abstract

Meta-analysis is a statistical method used in evidence synthesis for combining, analyzing and summarizing studies that have the same target endpoint and aims to derive a pooled quantitative estimate using fixed and random effects models or network models. Differences among included studies depend on variations in target populations (ie, heterogeneity) and variations in study quality due to study design and execution (ie, bias). The risk of bias is usually assessed qualitatively using critical appraisal, and quantitative bias analysis can be used to evaluate the influence of bias on the quantity of interest. We propose a way to consider ignorance or ambiguity in how to quantify bias terms in a bias analysis by characterizing bias with imprecision (as bounds on probability) and use robust Bayesian analysis to estimate the overall effect. Robust Bayesian analysis is here seen as Bayesian updating performed over a set of coherent probability distributions, where the set emerges from a set of bias terms. We show how the set of bias terms can be specified based on judgments on the relative magnitude of biases (ie, low, unclear, and high risk of bias) in one or several domains of the Cochrane's risk of bias table. For illustration, we apply a robust Bayesian bias-adjusted random effects model to an already published meta-analysis on the effect of Rituximab for rheumatoid arthritis from the Cochrane Database of Systematic Reviews.

摘要

荟萃分析是一种在证据综合中使用的统计方法,用于合并、分析和总结具有相同目标终点的研究,并使用固定效应模型和随机效应模型或网络模型得出汇总的定量估计。纳入研究之间的差异取决于目标人群的变化(即异质性)和由于研究设计和实施而导致的研究质量变化(即偏倚)。偏倚风险通常使用批判性评价进行定性评估,而定量偏倚分析可用于评估偏倚对感兴趣数量的影响。我们提出了一种方法,通过用不精确性(概率边界)来描述偏倚,来考虑在偏倚分析中如何量化偏倚项的不确定性或模糊性,并使用稳健贝叶斯分析来估计总体效果。稳健贝叶斯分析在这里被视为在一组连贯的概率分布上进行的贝叶斯更新,其中该组是从一组偏倚项中产生的。我们展示了如何根据对一个或几个 Cochrane 偏倚风险表领域中的偏倚相对大小的判断(即低、不清楚和高偏倚风险)来指定偏倚项集。为了说明这一点,我们将稳健贝叶斯偏倚调整的随机效应模型应用于已发表的 Cochrane 系统评价数据库中关于利妥昔单抗治疗类风湿关节炎的荟萃分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b46/9544319/e19f3cfbecfa/SIM-41-3365-g013.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验