Mulgrave Jami J, Madigan David, Hripcsak George
Observational Health Data Sciences and Informatics (OHDSI), New York, USA.
Department of Biomedical Informatics, Columbia University, New York, USA.
Stat Anal Data Min. 2024 Dec;17(6). doi: 10.1002/sam.11715. Epub 2024 Dec 4.
Observational healthcare data offer the potential to estimate causal effects of medical products on a large scale. However, the confidence intervals and p-values produced by observational studies only account for random error and fail to account for systematic error. As a consequence, operating characteristics such as confidence interval coverage and Type I error rates often deviate sharply from their nominal values and render interpretation impossible. While there is a longstanding awareness of systematic error in observational studies, analytic approaches to empirically account for systematic error are relatively new. Several authors have proposed approaches using negative controls (also known as "falsification hypotheses") and positive controls. The basic idea is to adjust confidence intervals and p-values in light of the bias (if any) detected in the analyses of the negative and positive control. In this work, we propose a Bayesian statistical procedure for posterior interval calibration that uses negative and positive controls. We show that the posterior interval calibration procedure restores nominal characteristics, such as 95% coverage of the true effect size by the 95% posterior interval.
观察性医疗保健数据提供了大规模估计医疗产品因果效应的潜力。然而,观察性研究产生的置信区间和p值仅考虑了随机误差,而未考虑系统误差。因此,诸如置信区间覆盖率和I型错误率等操作特征往往与它们的标称值有很大偏差,从而无法进行解释。虽然人们早就意识到观察性研究中的系统误差,但用于实证考虑系统误差的分析方法相对较新。几位作者提出了使用阴性对照(也称为“证伪假设”)和阳性对照的方法。基本思想是根据在阴性和阳性对照分析中检测到的偏差(如果有的话)调整置信区间和p值。在这项工作中,我们提出了一种使用阴性和阳性对照的贝叶斯统计程序进行后验区间校准。我们表明,后验区间校准程序恢复了标称特征,例如95%的后验区间对真实效应大小的95%覆盖率。