Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, Japan.
Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, Japan.
Sci Total Environ. 2022 Aug 20;835:155553. doi: 10.1016/j.scitotenv.2022.155553. Epub 2022 Apr 27.
To understand the influence of climate change on heavy rainfalls and reduce the consequential multidimensional risks, we develop a climate-informed and adaptation strategies-related framework by using the information on heavy rainfalls and various socioeconomic factors. For this purpose, we firstly quantify the spatiotemporal characteristics of heavy rainfalls with various durations (1 h to multiple days) and return periods (2-year to 50-year) for the flood-prone country Cambodia, as a case study, during the historical period (1980-2005), mid-century (2040-2065), and late-century (2070-2095), using the latest three hourly climate model datasets under RCP 8.5 and 1 hourly ERA5 reanalysis datasets. A novel conditional artificial neural network (CANN) model is employed for temporal disaggregation to obtain the monthly maximum of 1 hourly rainfall in the future periods and subsequently, a zero-inflated generalized extreme value function (ZIGEV) is applied for extreme value analysis (EVA) to obtain rainfall intensity with different return periods. Secondly, the province-level flood risk change maps are developed based on a novel flood risk change index. The combination of CANN and ZIGEV performs better in EVA than traditional approaches by reducing the uncertainty from the stationarity assumption of temporal disaggregation and bias in the disaggregated rainfall. Rainfall intensity is projected to increase more in higher return periods and shorter durations towards the late-century, predominantly over Southern and Central Cambodia. Projected rainfall intensity-duration-frequency (IDF) curves in the capital city, Phnom Penh, reveal that the occurrence frequency of heavy rainfall in a given duration (e.g., 48 h) is likely to become ~10-fold in the mid-century. Results of province-level flood risk change maps indicate that Southeastern and Northwestern regions should be prioritized for employing adaption strategies. Our results will assist the policymakers in further mapping the flood susceptibility and vulnerability in different spatiotemporal scales across various communities and localities in the country and beyond.
为了了解气候变化对暴雨的影响,并降低由此产生的多维度风险,我们开发了一个气候信息和适应策略相关的框架,利用暴雨信息和各种社会经济因素。为此,我们首先使用最新的三个小时气候模型数据集(RCP8.5)和一个小时的 ERA5 再分析数据集,对洪水多发国家柬埔寨的各种持续时间(1 小时到多天)和重现期(2 年到 50 年)的暴雨时空特征进行了量化,作为一个案例研究,研究时间为历史时期(1980-2005 年)、中期(2040-2065 年)和后期(2070-2095 年)。我们采用了一种新颖的条件人工神经网络(CANN)模型进行时间离散化,以获得未来时期的 1 小时最大降雨量,随后应用零膨胀广义极值值函数(ZIGEV)进行极值分析(EVA),以获得不同重现期的降雨强度。其次,根据一种新的洪水风险变化指数,开发了省级洪水风险变化图。CANN 和 ZIGEV 的组合在 EVA 中的表现优于传统方法,通过减少时间离散化的平稳性假设和离散降雨的偏差带来的不确定性。在后期,降雨强度预计在较高的重现期和较短的持续时间内增加更多,主要集中在柬埔寨南部和中部。在首都金边,预测的降雨强度-持续时间-频率(IDF)曲线表明,在给定持续时间(例如 48 小时)内,大雨发生的频率可能在中期增加约 10 倍。省级洪水风险变化图的结果表明,东南和西北地区应优先采取适应策略。我们的研究结果将有助于决策者在国家和其他地区不同社区和地方的不同时空尺度上进一步绘制洪水易感性和脆弱性图。