Suppr超能文献

利用机器学习方法量化印度 50 年来地下水的衰减情况。

Leveraging machine learning methods to quantify 50 years of dwindling groundwater in India.

机构信息

State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, China.

School of Environment and Society, Tokyo Institute of Technology, Yokohama 226-8503, Japan.

出版信息

Sci Total Environ. 2022 Aug 20;835:155474. doi: 10.1016/j.scitotenv.2022.155474. Epub 2022 Apr 27.

Abstract

Global compilations and regional studies, indicative of the unsustainable extraction and subsequent unremittingly depleting groundwater (GW) in India, either provide bulk estimates or are confined to the river basins and therefore conceal inferences from a nationwide policymaking perspective. Here, we provide the state-wise past (2000-2020) and future (2030-2050) assessment of dwindling groundwater in India utilizing in-situ groundwater levels (GWL) from 54,112 wells, remote sensing products, and hydrological simulations. By employing three machine learning methods, we show a decline in GWL of over 80% in North India with a notable shift towards the eastern state of Uttar Pradesh and a cumulative groundwater loss (169.96 ± 19.67 km) equivalent to the water storage capacity of the world's biggest dam (Kariba Dam, Zimbabwe). Its likely contribution to sea-level rise (0.47 ± 0.06 mm) is about 64% of that from annual global glacier melt. Our results typically contrast the GW recovery paradox in South India (e.g., a declining trend of -84.48 ± 38.81 mm/a (p < 0.05) in Andhra Pradesh during 2000-2020), reveal high seasonal variability (e.g., up to ~6 m in Maharashtra), and illustrate the skewed effect of survivor bias in the traditional assessments. We infer the significant impact of underlying hydrogeology and the implementation of water-related policies and projects on the GWL dynamic and variability in the region. Projected GWL reveals a likely water scarcity situation for about 2.8 million km area and one billion residents of the country up to 2050. Our observation-based analysis offers insights into the state-level monthly GW dynamics, which is critical for efficient interstate resource allocation, development plans, and policy interventions with broad methodological implications for the water-scarce countries.

摘要

全球汇编和区域研究表明,印度地下水(GW)的开采不可持续,且持续不断地枯竭,这些研究要么提供大量估计值,要么仅限于河流流域,因此从国家决策的角度掩盖了推断。在这里,我们利用来自 54112 口井的原位地下水水位(GWL)、遥感产品和水文模拟,提供了印度过去(2000-2020 年)和未来(2030-2050 年)各州地下水减少情况的评估。通过使用三种机器学习方法,我们展示了印度北部 GWL 的下降超过 80%,向东转移到北方邦,累积地下水损失(169.96 ± 19.67 公里)相当于世界上最大的大坝(津巴布韦卡里巴大坝)的蓄水量。它对海平面上升的可能贡献(0.47 ± 0.06 毫米)约占全球年冰川融化贡献的 64%。我们的结果通常与印度南部的地下水恢复悖论形成对比(例如,在 2000-2020 年期间,安得拉邦的下降趋势为-84.48 ± 38.81 毫米/年(p < 0.05)),揭示了高季节性变化(例如,马哈拉施特拉邦高达约 6 米),并说明了传统评估中幸存者偏差的倾斜效应。我们推断出地下水动态和变异性的主要影响是潜在的水文地质以及与水有关的政策和项目的实施。预测的 GWL 表明,到 2050 年,该国约 280 万平方公里的地区和 10 亿居民可能面临水资源短缺。我们基于观测的分析提供了对国家一级每月 GW 动态的深入了解,这对于高效的州际资源分配、发展计划和政策干预至关重要,并为缺水国家提供了广泛的方法学意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验