Suppr超能文献

将土地利用/土地覆被变化与全球地下蓄水层联系起来。

Linking Land Use Land Cover change to global groundwater storage.

机构信息

Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India.

Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India.

出版信息

Sci Total Environ. 2022 Dec 20;853:158618. doi: 10.1016/j.scitotenv.2022.158618. Epub 2022 Sep 7.

Abstract

Groundwater storage is facing the constant threat of over-exploitation and irreversible depletion, often attributed to agricultural and industrial usage as well as human mismanagement. While several methodologies, varying from well logs to gravity recovery data, have been successfully adopted over the years to track and mitigate groundwater loss, Land Use and Land Cover (LULC) has never been quantified to evaluate groundwater storage and variability. LULC change alters the hydrological connectivity between the surface and subsurface water. Towards this, we employed a decision tree based Machine Learning model to (a) identify hydrological and terrestrial drivers affecting groundwater resources, (b) predict shallow and deep groundwater variability, (c) rank the drivers according to their impact on groundwater distribution, and (d) understand groundwater distribution as a function of LULC change. The model was developed globally, and then extended to basinal scale observations in the Indus, Ganga and Brahmaputra rivers of the Indian subcontinent. Model output has helped to (a) compute the 'infiltration index' associated with each Land Cover, (b) equate cropland expansion among the three basins with shallow and deep groundwater storage and (c) link LULC-groundwater change to crop yield. RCP 2.6 crop yield estimates for the 21 century proves detrimental to Indian food and freshwater security, given the strong coupling of groundwater-LULC among the three basins and how Land Cover change translates to groundwater storage.

摘要

地下水储存面临着过度开采和不可逆转的枯竭的持续威胁,这通常归因于农业和工业用途以及人类管理不善。虽然多年来已经成功采用了从测井到重力恢复数据等多种方法来跟踪和减轻地下水流失,但土地利用和土地覆盖 (LULC) 从未被量化以评估地下水储存和变化。土地利用和土地覆盖变化改变了地表水和地下水之间的水文连通性。为此,我们采用基于决策树的机器学习模型来:(a) 确定影响地下水资源的水文和陆地驱动因素;(b) 预测浅层和深层地下水变化;(c) 根据对地下水分布的影响对驱动因素进行排名;(d) 了解地下水分布作为土地利用和土地覆盖变化的函数。该模型在全球范围内开发,并扩展到印度次大陆印度河、恒河和雅鲁藏布江流域的盆地尺度观测。模型输出有助于:(a) 计算与每种土地覆盖相关的“入渗指数”;(b) 将三个流域的耕地扩张与浅层和深层地下水储存联系起来;(c) 将土地利用和土地覆盖变化与作物产量联系起来。考虑到三个流域之间地下水-土地利用的紧密耦合,以及土地覆盖变化如何转化为地下水储存,RCP 2.6 对 21 世纪的作物产量估计对印度的粮食和淡水安全构成了威胁。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验