Suppr超能文献

剖宫产围手术期输血风险预测模型:病例对照研究。

A risk prediction model of perinatal blood transfusion for patients who underwent cesarean section: a case control study.

机构信息

Department of Obstetrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Road, Jinan, 250033, Shandong, China.

Center of Evidence-Based Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.

出版信息

BMC Pregnancy Childbirth. 2022 Apr 30;22(1):373. doi: 10.1186/s12884-022-04696-x.

Abstract

BACKGROUND

Severe obstetric hemorrhage is a leading cause of severe maternal morbidity. A perinatal blood transfusion is the key factor in the treatment of severe obstetric hemorrhage. Our aim is to identify patients with a high risk of perinatal blood transfusions before Cesarean Section, which can promote the effectiveness of the treatment of severe obstetric hemorrhage, as well as improve obstetric preparations.

METHODS

This study retrospectively analyzed the data of 71 perinatal blood transfusion patients and 170 controls, who were both underwent Cesarean Section from July 2018 to September 2019. These data were included in the training set to build the risk prediction model of needing blood transfusion. Additionally, the data of 148 patients with the same protocol from October 2019 to May 2020 were included in the validation set for model validation. A multivariable logistic regression model was used. A risk prediction nomogram was formulated per the results of the multivariate analysis.

RESULTS

The strongest risk factors for perinatal blood transfusions included preeclampsia (OR = 6.876, 95% CI: 2.226-23.964), abnormal placentation (OR = 5.480, 95% CI: 2.478-12.591), maternal age (OR = 1.087, 95% CI: 1.016-1.166), predelivery hemoglobin (OR = 0.973, 95% CI: 0.948-0.998) and predelivery fibrinogen (OR = 0.479, 95% CI: 0.290-0.759). A risk prediction model of perinatal blood transfusions for cesarean sections was developed (AUC = 0.819; sensitivity: 0.735; specificity: 0.848; critical value: 0.287).

CONCLUSIONS

The risk prediction model can identify the perinatal blood transfusions before Cesarean Section. With the nomogram, the model can be further quantified and visualized, and clinical decision-making can subsequently be further simplified and promoted.

摘要

背景

严重产后出血是导致严重产妇发病率的主要原因之一。围产期输血是治疗严重产后出血的关键因素。我们的目的是在剖宫产前识别出有围产期输血高风险的患者,这可以提高严重产后出血治疗的效果,同时也可以改善产科准备。

方法

本研究回顾性分析了 2018 年 7 月至 2019 年 9 月期间行剖宫产术的 71 例围产期输血患者和 170 例对照患者的数据。这些数据被纳入训练集以建立输血风险预测模型。此外,2019 年 10 月至 2020 年 5 月期间,采用相同方案的 148 例患者的数据被纳入验证集以验证模型。采用多变量逻辑回归模型。根据多变量分析的结果制定风险预测列线图。

结果

围产期输血的最强危险因素包括子痫前期(OR=6.876,95%CI:2.226-23.964)、异常胎盘(OR=5.480,95%CI:2.478-12.591)、产妇年龄(OR=1.087,95%CI:1.016-1.166)、产前血红蛋白(OR=0.973,95%CI:0.948-0.998)和产前纤维蛋白原(OR=0.479,95%CI:0.290-0.759)。建立了剖宫产围产期输血风险预测模型(AUC=0.819;敏感性:0.735;特异性:0.848;临界值:0.287)。

结论

该风险预测模型可在剖宫产前预测围产期输血。通过列线图,可以进一步对模型进行量化和可视化,从而简化和促进临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93fb/9055706/433aca909896/12884_2022_4696_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验