Suppr超能文献

开发一种机器学习方法,用于预测单家医疗机构行剖宫产术患者的红细胞输血。

Development of a machine learning approach for prediction of red blood cell transfusion in patients undergoing Cesarean section at a single institution.

机构信息

Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Pungnap 2(i)-dong, Songpa-gu, Seoul, 05505, Republic of Korea.

Big Data Research Center, Asan Medical Center, Seoul, 05505, Republic of Korea.

出版信息

Sci Rep. 2024 Jul 18;14(1):16628. doi: 10.1038/s41598-024-67784-2.

Abstract

Despite recent advances in surgical techniques and perinatal management in obstetrics for reducing intraoperative bleeding, blood transfusion may occur during a cesarean section (CS). This study aims to identify machine learning models with an optimal diagnostic performance for intraoperative transfusion prediction in parturients undergoing a CS. Additionally, to address model performance degradation due to data imbalance, this study further investigated the variation in predictive model performance depending on the ratio of event to non-event data (1:1, 1:2, 1:3, and 1:4 model datasets and raw data).The area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC) were evaluated to compare the predictive accuracy of different machine learning algorithms, including XGBoost, K-nearest neighbor, decision tree, support vector machine, multilayer perceptron, logistic regression, random forest, and deep neural network. We compared the predictive performance of eight prediction algorithms that were applied to five types of datasets. The intraoperative transfusion in maternal CS was 7.2% (1020/14,254). XGBoost showed the highest AUROC (0.8257) and AUPRC (0.4825) among the models. The most significant predictors for transfusion in maternal CS as per machine learning models were placenta previa totalis, haemoglobin, placenta previa partialis, and platelets. In all eight prediction algorithms, the change in predictive performance based on the AUROC and AUPRC according to the resampling ratio was insignificant. The XGBoost algorithm exhibited optimal performance for predicting intraoperative transfusion. Data balancing techniques employed to alter the event data composition ratio of the training data failed to improve the performance of the prediction model.

摘要

尽管最近在产科手术技术和围产期管理方面取得了进展,以减少剖宫产术中的术中出血,但在剖宫产术中仍可能需要输血。本研究旨在确定具有最佳诊断性能的机器学习模型,以预测行剖宫产术的产妇术中输血。此外,为了解决由于数据不平衡导致的模型性能下降问题,本研究进一步研究了预测模型性能随事件与非事件数据比例(1:1、1:2、1:3 和 1:4 模型数据集和原始数据)变化而变化的情况。比较了不同机器学习算法(XGBoost、K 最近邻、决策树、支持向量机、多层感知机、逻辑回归、随机森林和深度神经网络)的预测准确性,评估了受试者工作特征曲线下面积(AUROC)和精度-召回曲线下面积(AUPRC)。我们比较了应用于五种数据集的八种预测算法的预测性能。产妇剖宫产术中的术中输血率为 7.2%(1020/14254)。XGBoost 在模型中显示出最高的 AUROC(0.8257)和 AUPRC(0.4825)。根据机器学习模型,产妇剖宫产术中输血的最重要预测因素是完全性前置胎盘、血红蛋白、部分性前置胎盘和血小板。在所有八种预测算法中,根据 AUROC 和 AUPRC 预测性能的变化与重采样比例无关。XGBoost 算法在预测术中输血方面表现出最佳性能。用于改变训练数据中事件数据组成比例的数据平衡技术未能提高预测模型的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4045/11258332/643c2dbc2ef9/41598_2024_67784_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验