Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
R&D Institute of Radioactive Wastes, Korea Radioactive Waste Agency, 174 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea.
Bioelectrochemistry. 2022 Aug;146:108140. doi: 10.1016/j.bioelechem.2022.108140. Epub 2022 Apr 23.
Microbial electrosynthesis (MES) is a renewable energy platform capable of reducing the carbon footprint by converting carbon dioxide/bicarbonate to useful chemical commodities. However, the development of feasible electrode structures, inefficient current densities, and the production of unfavorable electrosynthesis products remain a major challenge. To this end, a three-dimensional (3D) macroporous sponge coated with a carbon nanotube/MXene composite (CNT-MXene@Sponge) was evaluated as an MES cathode. The macroporous scaffold, together with intrinsic electrical conductivity, enhanced the charge transfer efficiency and selective microbial enrichment characteristics of the CNT-MXene@Sponge cathode resulted in an average current density of -324 mA m, which was substantially higher than that of the uncoated (-100 mA m), CNT (-141 mA m), and MXene (-214 mA m) coated sponge electrode. The uniform 3D structure and abundant active sites of the coated material facilitated mass diffusion and microbial growth, which produced 1.5 orders of magnitude higher butyrate than the uncoated sponge. The high-throughput sequencing results showed the selective enrichment of electrogenic and butyrate-producing phylum, Firmicutes. These results suggest that the MES performance could be enhanced using the collective features of large-pore network structure, such as better conductivity, improved capacitance, and selective microbial enrichment.
微生物电合成(MES)是一种可再生能源平台,能够通过将二氧化碳/碳酸氢盐转化为有用的化学商品来减少碳足迹。然而,开发可行的电极结构、低效率的电流密度以及产生不利的电合成产物仍然是一个主要挑战。为此,评估了一种三维(3D)大孔海绵涂覆有碳纳米管/MXene 复合材料(CNT-MXene@Sponge)作为 MES 阴极。大孔支架以及固有导电性提高了 CNT-MXene@Sponge 阴极的电荷转移效率和选择性微生物富集特性,导致平均电流密度为-324 mA m,明显高于未涂覆的(-100 mA m)、涂覆 CNT 的(-141 mA m)和 MXene 的(-214 mA m)海绵电极。涂覆材料的均匀 3D 结构和丰富的活性位点促进了质量扩散和微生物生长,产生的丁酸盐比未涂覆的海绵高出 1.5 个数量级。高通量测序结果表明,电生成和产生丁酸盐的菌门得到了选择性富集。这些结果表明,使用大孔网络结构的集体特征(例如更好的导电性、提高的电容和选择性微生物富集)可以增强 MES 的性能。