Suppr超能文献

用于介孔NiO纳米晶体多变量优化的人工神经网络的实现:生物柴油应用

The implementation of artificial neural networks for the multivariable optimization of mesoporous NiO nanocrystalline: biodiesel application.

作者信息

Soltani Soroush, Shojaei Taha Roodbar, Khanian Nasrin, Yaw Choong Thomas Shean, Rashid Umer, Nehdi Imededdine Arbi, Yusoff Rozita Binti

机构信息

Department of Chemical and Environmental Engineering, Universiti Putra Malaysia 43400 Selangor Malaysia

Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran Karaj Iran.

出版信息

RSC Adv. 2020 Apr 1;10(22):13302-13315. doi: 10.1039/d0ra00892c. eCollection 2020 Mar 30.

Abstract

In the present research, artificial neural network (ANN) modelling was utilized to determine the relative importance of effective variables to achieve optimum specific surface areas of a synthesized catalyst. Initially, carbonaceous nanocrystalline mesoporous NiO core-shell solid sphere composites were produced by applying incomplete carbonized glucose (ICG) as the pore directing agent and polyethylene glycol (PEG; 4000) as the surfactant a hydrothermal-assisted method. The Brunauer-Emmett-Teller (BET) model was applied to ascertain the textural characteristics of the as-prepared mesoporous NiO catalyst. The effects of several key parameters such as metal ratio, surfactant and template concentrations, and calcination temperature on the prediction of the surface areas of the as-synthesized catalyst were evaluated. In order to verify the optimum hydrothermal fabrication conditions, ANN was trained over five different algorithms (QP, BBP, IBP, LM, and GA). Among five different algorithms, LM-4-7-1 representing 4 nodes in the input layer, 7 nodes in the hidden layer, and 1 node in the output layer was verified as the optimum model due to its optimum numerical properties. According to the modelling study, the calcination temperature demonstrated the most effective parameter, while the ICG concentration indicated the least effect. By verifying the optimum hydrothermal fabrication conditions, the thermal decomposition of ammonium sulphate (TDAS) was applied to the functionalized surface areas and mesoporous walls by -SOH functional groups. In addition, the catalytic performance and reusability of the produced mesoporous SOH-NiO catalyst were evaluated the transesterification of waste cooking palm oil, resulting in a methyl ester content of 97.4% and excellent stability for nine consecutive transesterification reactions without additional treatments.

摘要

在本研究中,利用人工神经网络(ANN)建模来确定有效变量对合成催化剂达到最佳比表面积的相对重要性。首先,通过应用不完全碳化葡萄糖(ICG)作为孔导向剂和聚乙二醇(PEG;4000)作为表面活性剂,采用水热辅助法制备了碳质纳米晶介孔NiO核壳实心球复合材料。应用布鲁瑙尔-埃梅特-特勒(BET)模型来确定所制备的介孔NiO催化剂的结构特征。评估了金属比例、表面活性剂和模板浓度以及煅烧温度等几个关键参数对合成催化剂表面积预测的影响。为了验证最佳水热制备条件,对ANN在五种不同算法(QP、BBP、IBP、LM和GA)上进行了训练。在五种不同算法中,代表输入层4个节点、隐藏层7个节点和输出层1个节点的LM-4-7-1因其最佳数值特性被验证为最佳模型。根据建模研究,煅烧温度是最有效的参数而ICG浓度影响最小。通过验证最佳水热制备条件,将硫酸铵热分解(TDAS)应用于由-SOH官能团官能化的表面积和介孔壁。此外,对所制备的介孔SOH-NiO催化剂的催化性能和可重复使用性进行了评估——用于废食用棕榈油的酯交换反应,甲酯含量达到97.4%,并且在无需额外处理的情况下连续九次酯交换反应具有出色的稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92bb/9051417/a85c3ece7b0c/d0ra00892c-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验