Filali Baba Yassir, Hayani Sonia, Dalbouha Samira, Hökelek Tuncer, Ouazzani Chahdi Fouad, Mague Joel T, Kandri Rodi Youssef, Sebbar Nada Kheira, Essassi El Mokhtar
Laboratory of Applied Organic Chemistry, Faculty of Science and Technology, Sidi Mohammed Ben Abdullah University, Route d'Immouzzer, BP 2202, Fez, Morocco.
Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, CERNE2D, Faculty of Sciences-Rabat, Mohammed V University, Av. Ibn Battouta, BP 1014 Rabat, Morocco.
Acta Crystallogr E Crystallogr Commun. 2022 Mar 22;78(Pt 4):425-432. doi: 10.1107/S2056989022002912. eCollection 2022 Apr 1.
In the title compound, CHClNO, the di-hydro-quinoline moiety is not planar with a dihedral angle between the two ring planes of 1.61 (6)°. An intra-molecular C-H⋯O hydrogen bond helps to establish the rotational orientation of the carboxyl group. In the crystal, sheets of mol-ecules parallel to (10) are generated by C-H⋯O and C-H⋯Cl hydrogen bonds, and are stacked through slipped π-stacking inter-actions between inversion-related di-hydro-quinoline units. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (34.2%), H⋯O/O⋯H (19.9%), H⋯Cl/Cl⋯H (12.8%), H⋯C/C⋯H (10.3%) and C⋯C (9.7%) inter-actions. Computational chemistry indicates that in the crystal, the C-H⋯Cl hydrogen-bond energy is -37.4 kJ mol, while the C-H⋯O hydrogen-bond energies are -45.4 and -29.2 kJ mol. An evaluation of the electrostatic, dispersion and total energy frameworks revealed that the stabilization is dominated the dispersion energy contribution. Density functional theory (DFT) optimized structures at the B3LYP/6-311 G(d,p) level are compared with the experimentally determined mol-ecular structure in the solid state, and the HOMO-LUMO behaviour was elucidated to determine the energy gap.
在标题化合物CHClNO中,二氢喹啉部分不是平面的,两个环平面之间的二面角为1.61 (6)°。分子内的C—H⋯O氢键有助于确定羧基的旋转取向。在晶体中,平行于(10)的分子片由C—H⋯O和C—H⋯Cl氢键形成,并通过反演相关的二氢喹啉单元之间的滑移π-堆积相互作用堆叠。对晶体结构的 Hirshfeld 表面分析表明,晶体堆积的最重要贡献来自H⋯H(34.2%)、H⋯O/O⋯H(19.9%)、H⋯Cl/Cl⋯H(12.8%)、H⋯C/C⋯H(10.3%)和C⋯C(9.7%)相互作用。计算化学表明,在晶体中,C—H⋯Cl氢键能为 -37.4 kJ mol,而C—H⋯O氢键能为 -45.4和 -29.2 kJ mol。对静电、色散和总能量框架的评估表明,稳定性主要由色散能量贡献主导。将密度泛函理论(DFT)在B3LYP/6-311 G(d,p)水平上优化的结构与实验测定的固态分子结构进行比较,并阐明HOMO-LUMO行为以确定能隙。