Tenenbaum Alexander
Physics Department, Sapienza University Piazzale Aldo Moro 5 00185 Roma Italy
RSC Adv. 2021 Nov 10;11(57):36242-36249. doi: 10.1039/d1ra06823g. eCollection 2021 Nov 4.
The dynamics of two proteins of similar size, the globular lysozyme and the intrinsically disordered Huntingtin interacting protein, has been simulated in three states resembling a globule, a pre-molten globule, and a molten globule. A coherence time has been defined, measuring the delay in the display of a stochastic behaviour after a perturbation of the system. This time has been computed for two sets of collective variables: the projection of the phase point onto the positions and momenta subspaces ( and ), and the principal components (PCs) of positions and momenta produced by a covariance analysis in these subspaces ( and ). In all states ≈ 3.5 , and ≈ 3.5 . The coherence times of individual PCs, and , have also been computed, and > in all states. The prevalence of over , or of over , drives the dynamics of the protein over a time range of ≈1-2 ps; moreover, a hidden synchronism appears to raise the momenta subspace's coherence above that of its individual PCs. In the transition of lysozyme to the molten globule the decrease but, unexpectedly, the increase; after this transition ≈ 5 and ≈ 5 . A gain of accompanies thus the loss of caused by the denaturation of the protein in the transition from globule to molten globule. The increase of the does not take place in the analogous transition of the Huntingtin protein. These results are compared with those of a similar analysis performed on three pseudo-proteins designed by scrambling the primary sequence of the Huntingtin interacting protein, and on two oligopeptides. The hidden synchronism appears to be a generic property of these polypeptides. The spectrum is similar in denaturated and in intrinsically disordered biomolecules; but the gain of kinetic coherence as a result of denaturation seems to be a specific property of the biologically functional lysozyme.
已经在三种类似于球状、预熔球态和熔球态的状态下模拟了两种大小相似的蛋白质的动力学,即球状溶菌酶和内在无序的亨廷顿相互作用蛋白。定义了一个相干时间,用于测量系统受到扰动后随机行为显示的延迟。针对两组集体变量计算了这个时间:相点在位置和动量子空间上的投影((X)和(P)),以及在这些子空间中通过协方差分析产生的位置和动量的主成分((PC))((X_{PC})和(P_{PC}))。在所有状态下,(\tau_{X} \approx 3.5) ps,(\tau_{P} \approx 3.5) ps。还计算了各个主成分的相干时间(\tau_{X_{PC}})和(\tau_{P_{PC}}),并且在所有状态下(\tau_{X_{PC}} > \tau_{P_{PC}})。(\tau_{X})相对于(\tau_{P})或(\tau_{X_{PC}})相对于(\tau_{P_{PC}})的优势,在大约(1 - 2) ps的时间范围内驱动蛋白质的动力学;此外,一种隐藏的同步性似乎使动量子空间的相干性高于其各个主成分的相干性。在溶菌酶向熔球态的转变中,(\tau_{X})减小,但出乎意料的是,(\tau_{P})增加;在这种转变之后,(\tau_{X} \approx 5) ps且(\tau_{P} \approx 5) ps。因此,在从球状向熔球态转变过程中蛋白质变性导致(\tau_{X})损失的同时,伴随着(\tau_{P})的增加。在亨廷顿蛋白的类似转变中,(\tau_{P})的增加并未发生。将这些结果与对通过打乱亨廷顿相互作用蛋白的一级序列设计的三种伪蛋白以及两种寡肽进行的类似分析结果进行了比较。隐藏的同步性似乎是这些多肽的一个普遍特性。在变性和内在无序的生物分子中,(P_{PC})谱相似;但由于变性导致的动力学相干性增加似乎是具有生物学功能的溶菌酶的一个特定特性。