Suppr超能文献

使用基因表达谱去卷积算法结合外来读取重映射分析肝癌组织中微生物和免疫细胞丰度的联合分析。

Joint Analysis of Microbial and Immune Cell Abundance in Liver Cancer Tissue Using a Gene Expression Profile Deconvolution Algorithm Combined With Foreign Read Remapping.

机构信息

Basic Experimental Center of Natural Science, University of Science and Technology Beijing, Beijing, China.

School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China.

出版信息

Front Immunol. 2022 Apr 14;13:853213. doi: 10.3389/fimmu.2022.853213. eCollection 2022.

Abstract

Recent transcriptomics and metagenomics studies showed that tissue-infiltrating immune cells and bacteria interact with cancer cells to shape oncogenesis. This interaction and its effects remain to be elucidated. However, it is technically difficult to co-quantify immune cells and bacteria in their respective microenvironments. To address this challenge, we herein report the development of a complete a bioinformatics pipeline, which accurately estimates the number of infiltrating immune cells using a novel Particle Swarming Optimized Support Vector Regression (PSO-SVR) algorithm, and the number of infiltrating bacterial using foreign read remapping and the GRAMMy algorithm. It also performs systematic differential abundance analyses between tumor-normal pairs. We applied the pipeline to a collection of paired liver cancer tumor and normal samples, and we identified bacteria and immune cell species that were significantly different between tissues in terms of health status. Our analysis showed that this dual model of microbial and immune cell abundance had a better differentiation (84%) between healthy and diseased tissue. sp., sp., sp., sp., as well as regulatory T cells (Tregs), resting mast cells, monocytes, M2 macrophases, neutrophils were identified as significantly different (Mann Whitney Test, FDR< 0.05). Our open-source software is freely available from GitHub at https://github.com/gutmicrobes/PSO-SVR.git.

摘要

最近的转录组学和宏基因组学研究表明,组织浸润免疫细胞和细菌与癌细胞相互作用,从而影响肿瘤的发生。这种相互作用及其影响仍有待阐明。然而,在各自的微环境中同时定量免疫细胞和细菌具有一定的技术难度。为了解决这一挑战,我们在此报告了一个完整的生物信息学管道的开发,该管道使用新颖的粒子群优化支持向量回归(PSO-SVR)算法准确估计浸润免疫细胞的数量,使用外来读取重映射和 GRAMMy 算法估计浸润细菌的数量,并对肿瘤-正常对进行系统的差异丰度分析。我们将该管道应用于一组配对的肝癌肿瘤和正常样本,鉴定了在健康和疾病组织中存在显著差异的细菌和免疫细胞种类。我们的分析表明,这种微生物和免疫细胞丰度的双重模型在健康和患病组织之间具有更好的区分度(84%)。鉴定出的差异显著的细菌和免疫细胞包括: sp.、 sp.、 sp.、 sp.、调节性 T 细胞(Tregs)、静止肥大细胞、单核细胞、M2 巨噬细胞、中性粒细胞。(Mann Whitney Test,FDR<0.05)。我们的开源软件可在 GitHub 上免费获取,网址为 https://github.com/gutmicrobes/PSO-SVR.git。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/216b/9047545/9a7ee8d97964/fimmu-13-853213-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验