Suppr超能文献

VCNet:基于向量的基因共表达网络构建及其在 RNA-seq 数据中的应用。

VCNet: vector-based gene co-expression network construction and its application to RNA-seq data.

机构信息

Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.

LMAM, School of Mathematical Sciences, Peking University, Beijing, China.

出版信息

Bioinformatics. 2017 Jul 15;33(14):2173-2181. doi: 10.1093/bioinformatics/btx131.

Abstract

MOTIVATION

Building gene co-expression network (GCN) from gene expression data is an important field of bioinformatic research. Nowadays, RNA-seq data provides high dimensional information to quantify gene expressions in term of read counts for individual exons of genes. Such an increase in the dimension of expression data during the transition from microarray to RNA-seq era made many previous co-expression analysis algorithms based on simple univariate correlation no longer applicable. Recently, two vector-based methods, SpliceNet and RNASeqNet, have been proposed to build GCN. However, they failed to work when sample size is less than the number of exons.

RESULTS

We develop an algorithm called VCNet to construct GCN from RNA-seq data to overcome this dimensional problem. VCNet performs a new statistical hypothesis test based on the correlation matrix of a gene-gene pair using the Frobenius norm. The asymptotic distribution of the new test is obtained under the null model. Simulation studies demonstrate that VCNet outperforms SpliceNet and RNASeqNet for detecting edges of GCN. We also apply VCNet to two expression datasets from TCGA database: the normal breast tissue and kidney tumour tissue, and the results show that the GCNs constructed by VCNet contain more biologically meaningful interactions than existing methods.

CONCLUSION

VCNet is a useful tool to construct co-expression network.

AVAILABILITY AND IMPLEMENTATION

VCNet is open source and freely available from https://github.com/wangzengmiao/VCNet under GNU LGPL v3.

CONTACT

dengmh@pku.edu.cn or nelsontang@cuhk.edu.hk.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

从基因表达数据构建基因共表达网络 (GCN) 是生物信息学研究的一个重要领域。如今,RNA-seq 数据提供了高维信息,以读取计数的形式量化基因在基因各个外显子上的表达。在从微阵列到 RNA-seq 时代的转变过程中,表达数据的维度增加,使得许多以前基于简单单变量相关性的共表达分析算法不再适用。最近,提出了两种基于向量的方法 SpliceNet 和 RNASeqNet 来构建 GCN。然而,当样本量小于外显子数量时,它们无法工作。

结果

我们开发了一种称为 VCNet 的算法,用于从 RNA-seq 数据构建 GCN,以克服这个维度问题。VCNet 使用基因对的相关矩阵基于 Frobenius 范数执行新的统计假设检验。在零假设下,获得了新检验的渐近分布。模拟研究表明,VCNet 在检测 GCN 的边缘方面优于 SpliceNet 和 RNASeqNet。我们还将 VCNet 应用于 TCGA 数据库中的两个表达数据集:正常乳腺组织和肾肿瘤组织,结果表明,VCNet 构建的 GCN 包含比现有方法更多的有意义的生物学相互作用。

结论

VCNet 是构建共表达网络的有用工具。

可用性和实现

VCNet 是开源的,可在 https://github.com/wangzengmiao/VCNet 下根据 GNU LGPL v3 免费获得。

联系人

dengmh@pku.edu.cnnelsontang@cuhk.edu.hk

补充信息

补充数据可在 Bioinformatics 在线获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验