Suppr超能文献

Changes in the types of collagen synthesized during chondrogenesis of the mouse otic capsule.

作者信息

D'Amico-Martel A, Van de Water T R, Wootton J A, Minor R R

出版信息

Dev Biol. 1987 Apr;120(2):542-55. doi: 10.1016/0012-1606(87)90257-0.

Abstract

We have investigated the temporal relationship between the morphological differentiation of the mouse otic capsule and the pattern of collagen synthesis by mouse otocyst-mesenchyme complexes labeled in vitro. In 10.5- to 12-day embryos the mesenchyme surrounding the otocyst was loosely organized except for a few lateroventral condensations; explants from these embryos synthesized only small amounts of collagen. Collagen synthesis by whole explants increased by more than 50% between 12 and 13 days concomitant with metachromatic staining of the lateral periotic mesenchyme. Cartilage specific type II collagen was the predominant collagen synthesized by these explants as confirmed by SDS-PAGE, densitometry, CNBr cleavage, and V8 protease digestion. This biochemical expression of the cartilage phenotype preceded morphologic recognition of otic capsular cartilage by almost 2 days. Type II collagen synthesis continued to increase and predominate through Day 16 of gestation by which time the otic labyrinth was surrounded by mature cartilage. The minor cartilage collagen chains, 1 alpha, 2 alpha, and 3 alpha, first appeared on different days of gestation. The 1 alpha, and 3 alpha chains were synthesized by explants from 11-day embryos while the 2 alpha chain appeared during Day 13, just before overt differentiation of mature cartilage. These results suggested that the 1 alpha, 2 alpha, and 3 alpha chains may not form heterotrimers containing all three chains and that synthesis of the 2 alpha chain may be associated with stabilization of the cartilaginous matrix. Comparison of these data with the patterns of collagen production by mutant, diseased, or experimentally manipulated inner ear tissues may provide insights into the molecular basis of chondrogenic tissue interactions.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验