Amna Bibi, Siddiqi Humaira Masood, Hassan Abbas, Ozturk Turan
Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan.
Istanbul Technical University, Department of Chemistry 34469 Maslak Istanbul Turkey
RSC Adv. 2020 Jan 27;10(8):4322-4396. doi: 10.1039/c9ra09712k. eCollection 2020 Jan 24.
Thiophene-based conjugated polymers hold an irreplaceable position among the continuously growing plethora of conjugated polymers due to their exceptional optical and conductive properties, which has made them a centre of attention for the past few decades and many researchers have contributed tremendously by designing novel strategies to reach more efficient materials for electronic applications. This review aims to highlight the recent (2012-2019) findings in design and synthesis of novel thiophene-based conjugated polymers for optical and electronic devices using organometallic polycondensation strategies. Nickel- and palladium-based protocols are the main focus of this account. Among them nickel-catalyzed Kumada catalyst-transfer polycondensation, nickel-catalyzed deprotonative cross-coupling polycondensation, palladium-catalyzed Suzuki-Miyaura and Migita-Kosugi-Stille couplings are the most popular strategies known so far for the synthesis of functionalized regioregular polythiophenes exhibiting fascinating properties such as electronic, optoelectronic, chemosensitivity, liquid crystallinity and high conductivity. This account also presents a brief overview of direct arylation polymerization (DArP) protocol that has shown a great potential to lessen the drawbacks of conventional polymerization techniques. DArP is a cost-effective and green method as it circumvents the need for the synthesis of arylene diboronic acid/diboronic ester and distannyl arylenes using toxic precursors. DArP also puts off the need to preactivate the C-H bonds, hence, presenting a facile route to synthesize polymers with controlled molecular weight, low polydispersity index, high regioregularity and tunable optoelectronic properties using palladium-based catalytic systems.
由于其优异的光学和导电性能,基于噻吩的共轭聚合物在不断增长的大量共轭聚合物中占据着不可替代的地位。在过去的几十年里,这使其成为人们关注的焦点,许多研究人员通过设计新颖的策略,为电子应用开发更高效的材料,做出了巨大贡献。本综述旨在突出近年来(2012 - 2019年)利用有机金属缩聚策略设计和合成用于光学和电子器件的新型基于噻吩的共轭聚合物的研究成果。基于镍和钯的方法是本综述的主要关注点。其中,镍催化的熊田催化剂转移缩聚、镍催化的去质子化交叉偶联缩聚、钯催化的铃木 - 宫浦和 Migita - Kosugi - 斯第尔偶联是目前已知的合成具有迷人性能(如电子、光电、化学敏感性、液晶性和高导电性)的官能化区域规整聚噻吩最流行的策略。本综述还简要概述了直接芳基化聚合(DArP)方法,该方法在减轻传统聚合技术的缺点方面显示出巨大潜力。DArP是一种经济高效且绿色的方法,因为它避免了使用有毒前体合成亚芳基二硼酸/二硼酸酯和二锡基芳烃的需求。DArP也无需预先活化C - H键,因此,提供了一条使用基于钯的催化体系合成具有可控分子量、低多分散指数、高区域规整性和可调光电性能的聚合物的简便途径。