Suppr超能文献

使用钙修饰的卟啉类多孔碳氮富勒烯实现可逆的一氧化碳存储和高效分离:一项密度泛函理论研究

Reversible CO storage and efficient separation using Ca decorated porphyrin-like porous CN fullerene: a DFT study.

作者信息

Esrafili Mehdi D, Hosseini Sharieh

机构信息

Department of Chemistry, Faculty of Basic Sciences, University of Maragheh P.O. Box 55136-553 Maragheh Iran

Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University Tehran Iran.

出版信息

RSC Adv. 2021 Oct 25;11(54):34402-34409. doi: 10.1039/d1ra05888f. eCollection 2021 Oct 18.

Abstract

The search for novel materials for effective storage and separation of CO molecules is a critical issue for eliminating or lowering this harmful greenhouse gas. In this paper, we investigate the potential application of a porphyrin-like porous fullerene (CN) as a promising material for CO storage and separation using thorough density functional theory calculations. The results show that CO is physisorbed on bare CN, implying that this material cannot be used for efficient CO storage. Coating CN with Ca atoms, on the other hand, can greatly improve the adsorption strength of CO molecules due to polarization and charge-transfer effects. Furthermore, the average adsorption energy for each of the maximum 24 absorbed CO molecules on the fully decorated CaCN fullerene is -0.40 eV, which fulfills the requirement needed for efficient CO storage (-0.40 to -0.80 eV). The Ca coated CN fullerene also have a strong potential for CO separation from CO/H, CO/CH, and CO/N mixtures.

摘要

寻找用于有效存储和分离一氧化碳(CO)分子的新型材料,是消除或降低这种有害温室气体的关键问题。在本文中,我们通过全面的密度泛函理论计算,研究了一种类卟啉多孔富勒烯(CN)作为有前景的CO存储和分离材料的潜在应用。结果表明,CO以物理吸附的方式吸附在裸露的CN上,这意味着该材料不能用于高效的CO存储。另一方面,用钙(Ca)原子包覆CN,由于极化和电荷转移效应,可以极大地提高CO分子的吸附强度。此外,在完全修饰的CaCN富勒烯上,最多24个被吸附的CO分子的平均吸附能为-0.40电子伏特,满足了高效CO存储所需的能量要求(-0.40至-0.80电子伏特)。包覆Ca的CN富勒烯在从CO/H₂、CO/CH₄和CO/N₂混合物中分离CO方面也具有很强的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b45d/9042344/0c81623b2278/d1ra05888f-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验