Yeh Chen-Hao, Chen Yu-Tang, Hsieh Dah-Wei
Department of Materials Science and Engineering, Feng Chia University No. 100, Wenhwa Rd., Seatwen Taichung 40724 Taiwan
RSC Adv. 2021 Oct 11;11(53):33276-33287. doi: 10.1039/d1ra05764b. eCollection 2021 Oct 8.
Janus 2D transition metal dichalcogenide (TMD) is a new generation 2D material with a unique asymmetric structure. This asymmetric structure (or out-off plane symmetric geometry) of Janus 2D TMD has been reported to yield tunable electronic properties through strain and electric field, which can also be applied in gas sensing. In this work, we performed DFT calculations to investigate the gas sensing property of cyclohexane and acetone on MoS and Janus MoSSe monolayers under external electric fields. Our results show that cyclohexane possesses slightly larger adsorption energy on pristine MoS and Janus MoSSe monolayers than acetone without external electric fields. After applying the external electric fields, the adsorption energy for cyclohexane on MoS shows no enhancement. However, the adsorption energy of acetone shows the most substantial enhancement on the Janus MoSSe monolayer. We found that the dipole moment orientations of adsorbates and the monolayer can strongly interact with the external electric fields. Hence, the combination of polar adsorbate and polar material, , acetone and Janus MoSSe, demonstrates the most vital sensitivity under the applied bias. On the other hand, the non-polar adsorbate and non-polar material combination show a negligible effect on external bias. These findings can be applied to the design of gas sensors in the future through polar materials.
Janus二维过渡金属二硫属化物(TMD)是一种具有独特不对称结构的新一代二维材料。据报道,Janus二维TMD的这种不对称结构(或面外对称几何结构)通过应变和电场可产生可调谐的电子特性,这也可应用于气体传感。在这项工作中,我们进行了密度泛函理论(DFT)计算,以研究在外部电场下环己烷和丙酮在MoS和Janus MoSSe单层上的气体传感特性。我们的结果表明,在没有外部电场的情况下,环己烷在原始MoS和Janus MoSSe单层上的吸附能略大于丙酮。施加外部电场后,环己烷在MoS上的吸附能没有增强。然而,丙酮在Janus MoSSe单层上的吸附能增强最为显著。我们发现吸附质和单层的偶极矩取向可以与外部电场强烈相互作用。因此,极性吸附质和极性材料(即丙酮和Janus MoSSe)的组合在施加偏压下表现出最重要的灵敏度。另一方面,非极性吸附质和非极性材料的组合对外部偏压的影响可忽略不计。这些发现未来可通过极性材料应用于气体传感器的设计。