Suppr超能文献

2,2',2'',4,4',4'',6,6',6''-九硝基-1,1':3',1''-三联苯(NONA)高温热解的反应分子动力学模拟

Reactive molecular dynamics simulation of the high-temperature pyrolysis of 2,2',2'',4,4',4'',6,6',6''-nonanitro-1,1':3',1''-terphenyl (NONA).

作者信息

Song Liang, Zhao Feng-Qi, Xu Si-Yu, Ju Xue-Hai

机构信息

Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 P. R. China

Laboratory of Science and Technology on Combustion and Explosion, Xi'an Modern Chemistry Research Institute Xi'an 710065 P. R. China.

出版信息

RSC Adv. 2020 Feb 4;10(9):5507-5515. doi: 10.1039/c9ra10261b. eCollection 2020 Jan 29.

Abstract

2,2',2'',4,4',4'',6,6',6''-Nonanitro-1,1':3',1''-terphenyl (NONA) is currently recognized as an excellent heat-resistant explosive. To improve the atomistic understanding of the thermal decomposition paths of NONA, we performed a series of reactive force field (ReaxFF) molecular dynamics simulations under extreme conditions of temperature and pressure. The results show that two distinct initial decomposition mechanisms are the homolytic cleavage of the C-NO bond and nitro-nitrite (NO → ONO) isomerization followed by NO fission. Bimolecular and fused ring compounds are found in the subsequent decomposition of NONA. The product identification analysis under finite time steps showed that the gaseous products are CO, N, and HO. The amount of CO is energetically more favorable for the system at high temperature or low density. The carbon-containing clusters are a favorable growth pathway at low temperatures, and this process was further demonstrated by the analysis of diffusion coefficients. The increase of the crystal density accelerates the decomposition of NONA judged by the analysis of reaction kinetic parameters and activation barriers. In the endothermic and exothermic stages, a 20% increase in NONA density increases the activation energies by 3.24 and 0.48 kcal mol, respectively. The values of activation energies (49.34-49.82 kcal mol) agree with the experimental data in the initial decomposition stage.

摘要

2,2',2'',4,4',4'',6,6',6''-九硝基-1,1':3',1''-三联苯(NONA)目前被认为是一种优异的耐热炸药。为了从原子层面更好地理解NONA的热分解路径,我们在极端的温度和压力条件下进行了一系列反应力场(ReaxFF)分子动力学模拟。结果表明,两种不同的初始分解机制是C-NO键的均裂以及硝基-亚硝酸盐(NO → ONO)异构化随后NO裂变。在NONA的后续分解过程中发现了双分子和稠环化合物。有限时间步长下的产物鉴定分析表明,气态产物为CO、N和HO。在高温或低密度条件下,CO的生成量在能量上对系统更有利。含碳簇在低温下是一种有利的生长途径,扩散系数分析进一步证明了这一过程。通过反应动力学参数和活化能垒分析判断,晶体密度的增加加速了NONA的分解。在吸热和放热阶段,NONA密度增加20%分别使活化能增加3.24和0.48 kcal/mol。活化能值(49.34 - 49.82 kcal/mol)与初始分解阶段的实验数据相符。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7899/9049255/94f0a4f33292/c9ra10261b-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验