Suppr超能文献

通过动态气体吸附研究高选择性碳纳米纤维上的CO/N分离

CO /N Separation on Highly Selective Carbon Nanofibers Investigated by Dynamic Gas Adsorption.

作者信息

Selmert Victor, Kretzschmar Ansgar, Weinrich Henning, Tempel Hermann, Kungl Hans, Eichel Rüdiger-A

机构信息

Institute of Energy and Climate Research - Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.

Institute of Physical Chemistry, RWTH Aachen University, 52056, Aachen, Germany.

出版信息

ChemSusChem. 2022 Jul 21;15(14):e202200761. doi: 10.1002/cssc.202200761. Epub 2022 May 24.

Abstract

The development of highly selective adsorbents for CO is a key part to advance separation by adsorption as a viable technique for CO capture. In this work, polyacrylonitrile (PAN) based carbon nanofibers (CNFs) were investigated for their CO separation capabilities using dynamic gas adsorption. The CNFs were prepared by electrospinning and subsequent carbonization at various temperatures ranging from 600 to 1000 °C. A thorough investigation of the CO /N selectivity resulted in measured values of 53-106 at 1 bar and 25 °C on CNFs carbonized at 600, 700, or 800 °C. Moreover, the selectivity increased with lower measurement temperatures and lower CO partial pressures, reaching values up to 194. Further analysis revealed high long-term stability with no degradation over 300 cycles and fast adsorption kinetics for CNFs carbonized at 600 or 700 °C. These excellent properties make PAN-based CNFs carbonized at 600 or 700 °C promising candidates for the capture of CO .

摘要

开发用于一氧化碳(CO)的高选择性吸附剂是推动吸附分离技术成为一种可行的CO捕集技术的关键部分。在这项工作中,使用动态气体吸附研究了基于聚丙烯腈(PAN)的碳纳米纤维(CNF)的CO分离能力。通过静电纺丝并随后在600至1000°C的不同温度下碳化制备了CNF。对CO/N选择性的深入研究表明,在1巴和25°C下,在600、700或800°C碳化的CNF上测量值为53-106。此外,选择性随着测量温度降低和CO分压降低而增加,达到高达194的值。进一步分析表明,在600或700°C碳化的CNF具有高长期稳定性,在300个循环内无降解且吸附动力学快。这些优异性能使在600或700°C碳化的基于PAN的CNF成为捕集CO的有前景的候选材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a59/9401035/5a6b807d4476/CSSC-15-0-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验