Suppr超能文献

构建紧密堆积配位超分子网络的疏液界面用于长循环和无枝晶锌金属电池。

Constructing Hydrophobic Interface with Close-Packed Coordination Supramolecular Network for Long-Cycling and Dendrite-Free Zn-Metal Batteries.

机构信息

School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China.

Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062, Dresden, Germany.

出版信息

Small. 2022 Jun;18(22):e2107971. doi: 10.1002/smll.202107971. Epub 2022 May 2.

Abstract

Commercialization of aqueous zinc-metal batteries remains unrealistic due to the substantial dendrite growth and side reaction issues on the zinc anodes. It is highly demanded to develop easy-to-handle approaches for constructing stable, dense, as well as homogeneous solid anode/electrolyte interfaces. Herein, the authors construct the zinc anode interface with a close-packed Zn-TSA (TSA = thiosalicylate) coordination supramolecular network through the facile and up-scalable wet-chemical method. The hydrophobic Zn-TSA network can block solvated water and establish a solid-state diffusion barrier to well-distribute the interfacial Zn , thus inhibiting hydrogen evolution and zinc dendrite growth on the anode. Meanwhile, the Zn-TSA network induces the formation of a uniform and stable solid electrolyte interphase composed of multiple inorganic-organic compounds. This denser structure can accommodate and self-heal the crack/degradation of the anode interphase associated with the repeated volume changes, and suppress the generation of detrimental by-product, Zn (OTF ) (OH) ·nH O. Such a rationally fabricated anode/electrolyte interface further endows the assembled symmetric cells with superior plating/stripping stability for over 2000 h without dendrite formation (at 1 mA cm and 1 mAh cm ). Furthermore, this zinc anode has practical application in the Zn-MoS and Zn-V O full cells. This study provides a new train of thought for constructing the dense interface of zinc-metal anode.

摘要

商业化的水系锌金属电池由于锌阳极存在大量枝晶生长和副反应问题,因此仍然不切实际。开发易于操作的方法来构建稳定、致密和均匀的固/液界面对于水系锌金属电池非常重要。在此,作者通过简便且可扩大规模的湿化学方法构建了具有紧密堆积 Zn-TSA(TSA = 邻氨基苯甲酸)配位超分子网络的锌阳极界面。疏水性 Zn-TSA 网络可以阻挡溶剂化水并建立固态扩散势垒,从而均匀分布界面 Zn,从而抑制阳极析氢和锌枝晶生长。同时,Zn-TSA 网络诱导形成由多种无机-有机化合物组成的均匀且稳定的固态电解质中间相。这种更致密的结构可以容纳和自我修复与反复体积变化相关的阳极中间相的裂纹/降解,并抑制有害副产物 Zn(OTF)(OH)·nH O 的产生。这种合理构建的阳极/电解质界面进一步赋予组装的对称电池卓越的电镀/剥离稳定性,超过 2000 小时没有枝晶形成(在 1 mA cm 和 1 mAh cm 下)。此外,该锌阳极在 Zn-MoS 和 Zn-V O 全电池中具有实际应用。本研究为构建致密的锌金属阳极界面提供了新的思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验