School of Mathematical Sciences, CMA-Shanghai, Shanghai Jiao Tong University, Shanghai, 200240, China.
School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
J Math Biol. 2022 May 2;84(6):46. doi: 10.1007/s00285-022-01756-w.
This paper deals with a system of reaction-diffusion-advection equations for a generalist predator-prey model in open advective environments, subject to an unidirectional flow. In contrast to the specialist predator-prey model, the dynamics of this system is more complex. It turns out that there exist some critical advection rates and predation rates, which classify the global dynamics of the generalist predator-prey system into three or four scenarios: (1) coexistence; (2) persistence of prey only; (3) persistence of predators only; and (4) extinction of both species. Moreover, the results reveal significant differences between the specialist predator-prey system and the generalist predator-prey system, including the evolution of the critical predation rates with respect to the ratio of the flow speeds; the take-over of the generalist predator; and the reduction in parameter range for the persistence of prey species alone. These findings may have important biological implications on the invasion of generalist predators in open advective environments.
本文研究了一个在单向流动的开放对流环境下的广义捕食者-被捕食者模型的反应-扩散-对流方程组。与专门的捕食者-被捕食者模型不同,这个系统的动力学更加复杂。结果表明,存在一些临界的对流率和捕食率,将广义捕食者-被捕食者系统的全局动力学分为三种或四种情况:(1)共存;(2)仅被捕食者持续存在;(3)仅捕食者持续存在;以及(4)两个物种都灭绝。此外,研究结果揭示了专门的捕食者-被捕食者系统和广义捕食者-被捕食者系统之间的显著差异,包括临界捕食率随流速比的演变;广义捕食者的接管;以及单独维持被捕食者物种的参数范围的减少。这些发现可能对广义捕食者在开放对流环境中的入侵具有重要的生物学意义。