Lu Zhiyue, Qian Hong
Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA.
Department of Applied Mathematics, University of Washington, Seattle, Washington 98195-3925, USA.
Phys Rev Lett. 2022 Apr 15;128(15):150603. doi: 10.1103/PhysRevLett.128.150603.
Thermodynamics as limiting behaviors of statistics is generalized to arbitrary systems with probability a priori where the thermodynamic infinite-size limit is replaced by a multiple-measurement limit. A duality symmetry between Massieu's and Gibbs's entropy arises in the limit of infinitely repeated observations, yielding the Gibbs equation and Hill-Gibbs-Duhem equation (HGDE) as a dual pair. If a system has a thermodynamic limit satisfying Callen's postulate, entropy being an Eulerian function, the symmetry is lost: the HGDE reduces to the Gibbs-Duhem equation. This theory provides a de-mechanized foundation for classical and nanothermodynamics and offers a framework for distilling emergence from large data, free from underlying details.
作为统计极限行为的热力学被推广到具有先验概率的任意系统,其中热力学无限大小极限被多次测量极限所取代。在无限重复观测的极限情况下,马西厄熵和吉布斯熵之间出现对偶对称性,产生吉布斯方程和希尔 - 吉布斯 - 杜亥姆方程(HGDE)作为对偶对。如果一个系统具有满足卡伦假设的热力学极限,熵是一个欧拉函数,那么对称性就会丧失:HGDE简化为吉布斯 - 杜亥姆方程。该理论为经典热力学和纳米热力学提供了一个非机械论的基础,并提供了一个从大数据中提炼出涌现现象的框架,而无需底层细节。