Suppr超能文献

Local Learning Enabled Iterative Linear Quadratic Regulator for Constrained Trajectory Planning.

作者信息

Ma Jun, Cheng Zilong, Zhang Xiaoxue, Lin Ziyu, Lewis Frank L, Lee Tong Heng

出版信息

IEEE Trans Neural Netw Learn Syst. 2023 Sep;34(9):5354-5365. doi: 10.1109/TNNLS.2022.3165846. Epub 2023 Sep 1.

Abstract

Trajectory planning is one of the indispensable and critical components in robotics and autonomous systems. As an efficient indirect method to deal with the nonlinear system dynamics in trajectory planning tasks over the unconstrained state and control space, the iterative linear quadratic regulator (iLQR) has demonstrated noteworthy outcomes. In this article, a local-learning-enabled constrained iLQR algorithm is herein presented for trajectory planning based on hybrid dynamic optimization and machine learning. Rather importantly, this algorithm attains the key advantage of circumventing the requirement of system identification, and the trajectory planning task is achieved with a simultaneous refinement of the optimal policy and the neural network system in an iterative framework. The neural network can be designed to represent the local system model with a simple architecture, and thus it leads to a sample-efficient training pipeline. In addition, in this learning paradigm, the constraints of the general form that are typically encountered in trajectory planning tasks are preserved. Several illustrative examples on trajectory planning are scheduled as part of the test itinerary to demonstrate the effectiveness and significance of this work.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验