Patino Cesar A, Mukherjee Prithvijit, Berns Eric J, Moully Elamar Hakim, Stan Liliana, Mrksich Milan, Espinosa Horacio D
Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States.
Theoretical and Applied Mechanics Program, Northwestern University, Evanston, Illinois 60208, United States.
ACS Nano. 2022 May 24;16(5):7937-7946. doi: 10.1021/acsnano.2c00698. Epub 2022 May 2.
Nondestructive cell membrane permeabilization systems enable the intracellular delivery of exogenous biomolecules for cell engineering tasks as well as the temporal sampling of cytosolic contents from live cells for the analysis of dynamic processes. Here, we report a format live-cell analysis device (LCAD) that can perform localized-electroporation induced membrane permeabilization, for cellular delivery or sampling, and directly interfaces with surface-based biosensors for analyzing the extracted contents. We demonstrate the capabilities of the LCAD via an automated high-throughput workflow for multimodal analysis of live-cell dynamics, consisting of quantitative measurements of enzyme activity using self-assembled monolayers for MALDI mass spectrometry (SAMDI) and deep-learning enhanced imaging and analysis. By combining a fabrication protocol that enables robust assembly and operation of multilayer devices with embedded gold electrodes and an automated imaging workflow, we successfully deliver functional molecules (plasmid and siRNA) into live cells at multiple time-points and track their effect on gene expression and cell morphology . Furthermore, we report sampling performance enhancements, achieving saturation levels of protein tyrosine phosphatase activity measured from as few as 60 cells, and demonstrate control over the amount of sampled contents by optimization of electroporation parameters using a lumped model. Lastly, we investigate the implications of cell morphology on electroporation-induced sampling of fluorescent molecules using a deep-learning enhanced image analysis workflow.
非破坏性细胞膜通透化系统能够实现外源性生物分子的细胞内递送,以用于细胞工程任务,还能对活细胞的胞质内容物进行实时采样,用于分析动态过程。在此,我们报告了一种新型活细胞分析装置(LCAD),它可以进行局部电穿孔诱导的膜通透化,用于细胞递送或采样,并直接与基于表面的生物传感器连接,以分析提取的内容物。我们通过一种用于活细胞动力学多模态分析的自动化高通量工作流程,展示了LCAD的功能,该工作流程包括使用用于基质辅助激光解吸电离质谱(SAMDI)的自组装单层膜进行酶活性的定量测量以及深度学习增强的成像和分析。通过将一种能够实现具有嵌入式金电极的多层装置的稳健组装和操作的制造方案与自动化成像工作流程相结合,我们成功地在多个时间点将功能分子(质粒和小干扰RNA)递送至活细胞中,并追踪它们对基因表达和细胞形态的影响。此外,我们报告了采样性能的提升,从少至60个细胞中测量的蛋白质酪氨酸磷酸酶活性达到饱和水平,并通过使用集总模型优化电穿孔参数来证明对采样内容物量的控制。最后,我们使用深度学习增强的图像分析工作流程研究了细胞形态对电穿孔诱导的荧光分子采样的影响。