University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France.
Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany.
Nat Commun. 2022 May 2;13(1):2363. doi: 10.1038/s41467-022-30042-y.
Chaperones, as modulators of protein conformational states, are key cellular actors to prevent the accumulation of fibrillar aggregates. Here, we integrated kinetic investigations with structural studies to elucidate how the ubiquitous co-chaperonin prefoldin inhibits diabetes associated islet amyloid polypeptide (IAPP) fibril formation. We demonstrated that both human and archaeal prefoldin interfere similarly with the IAPP fibril elongation and secondary nucleation pathways. Using archaeal prefoldin model, we combined nuclear magnetic resonance spectroscopy with electron microscopy to establish that the inhibition of fibril formation is mediated by the binding of prefoldin's coiled-coil helices to the flexible IAPP N-terminal segment accessible on the fibril surface and fibril ends. Atomic force microscopy demonstrates that binding of prefoldin to IAPP leads to the formation of lower amounts of aggregates, composed of shorter fibrils, clustered together. Linking structural models with observed fibrillation inhibition processes opens perspectives for understanding the interference between natural chaperones and formation of disease-associated amyloids.
伴侣蛋白作为蛋白质构象状态的调节剂,是防止纤维状聚集物积累的关键细胞因子。在这里,我们将动力学研究与结构研究相结合,阐明普遍存在的共伴侣蛋白原初折叠酶如何抑制与糖尿病相关的胰岛淀粉样多肽 (IAPP) 纤维形成。我们证明,人和古菌原初折叠酶都以相似的方式干扰 IAPP 纤维延伸和二级成核途径。使用古菌原初折叠酶模型,我们结合核磁共振波谱和电子显微镜来确定纤维形成的抑制是通过原初折叠酶的卷曲螺旋与纤维表面和纤维末端可及的灵活的 IAPP N 端片段的结合来介导的。原子力显微镜证明,原初折叠酶与 IAPP 的结合导致形成数量较少的聚集物,由较短的纤维聚集在一起组成。将结构模型与观察到的纤维抑制过程联系起来,为理解天然伴侣蛋白与疾病相关淀粉样蛋白形成之间的干扰提供了前景。